aboutsummaryrefslogtreecommitdiffstats
path: root/src/viterbi_sse.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/viterbi_sse.c')
-rw-r--r--src/viterbi_sse.c617
1 files changed, 617 insertions, 0 deletions
diff --git a/src/viterbi_sse.c b/src/viterbi_sse.c
new file mode 100644
index 00000000..5ca21b09
--- /dev/null
+++ b/src/viterbi_sse.c
@@ -0,0 +1,617 @@
+/*
+ * Intel SSE Viterbi decoder
+ *
+ * Copyright (C) 2013, 2014 Thomas Tsou <tom@tsou.cc>
+ *
+ * All Rights Reserved
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+#include <stdint.h>
+#include <emmintrin.h>
+#include <tmmintrin.h>
+#include <xmmintrin.h>
+
+#include "config.h"
+
+#if defined(HAVE_SSE4_1) || defined(HAVE_SSE41)
+ #include <smmintrin.h>
+#endif
+
+#ifdef HAVE_AVX2
+ #include <immintrin.h>
+#endif
+
+#define SSE_ALIGN 16
+
+extern int sse41_supported;
+extern int sse3_supported;
+extern int avx2_supported;
+
+/* Octo-Viterbi butterfly
+ * Compute 8-wide butterfly generating 16 path decisions and 16 accumulated
+ * sums. Inputs all packed 16-bit integers in three 128-bit XMM registers.
+ * Two intermediate registers are used and results are set in the upper 4
+ * registers.
+ *
+ * Input:
+ * M0 - Path metrics 0 (packed 16-bit integers)
+ * M1 - Path metrics 1 (packed 16-bit integers)
+ * M2 - Branch metrics (packed 16-bit integers)
+ *
+ * Output:
+ * M2 - Selected and accumulated path metrics 0
+ * M4 - Selected and accumulated path metrics 1
+ * M3 - Path selections 0
+ * M1 - Path selections 1
+ */
+#define SSE_BUTTERFLY(M0, M1, M2, M3, M4) \
+{ \
+ M3 = _mm_adds_epi16(M0, M2); \
+ M4 = _mm_subs_epi16(M1, M2); \
+ M0 = _mm_subs_epi16(M0, M2); \
+ M1 = _mm_adds_epi16(M1, M2); \
+ M2 = _mm_max_epi16(M3, M4); \
+ M3 = _mm_or_si128(_mm_cmpgt_epi16(M3, M4), _mm_cmpeq_epi16(M3, M4)); \
+ M4 = _mm_max_epi16(M0, M1); \
+ M1 = _mm_or_si128(_mm_cmpgt_epi16(M0, M1), _mm_cmpeq_epi16(M0, M1)); \
+}
+
+/* Two lane deinterleaving K = 5:
+ * Take 16 interleaved 16-bit integers and deinterleave to 2 packed 128-bit
+ * registers. The operation summarized below. Four registers are used with
+ * the lower 2 as input and upper 2 as output.
+ *
+ * In - 10101010 10101010 10101010 10101010
+ * Out - 00000000 11111111 00000000 11111111
+ *
+ * Input:
+ * M0:1 - Packed 16-bit integers
+ *
+ * Output:
+ * M2:3 - Deinterleaved packed 16-bit integers
+ */
+#define _I8_SHUFFLE_MASK 15, 14, 11, 10, 7, 6, 3, 2, 13, 12, 9, 8, 5, 4, 1, 0
+
+#define SSE_DEINTERLEAVE_K5(M0, M1, M2, M3) \
+{ \
+ M2 = _mm_set_epi8(_I8_SHUFFLE_MASK); \
+ M0 = _mm_shuffle_epi8(M0, M2); \
+ M1 = _mm_shuffle_epi8(M1, M2); \
+ M2 = _mm_unpacklo_epi64(M0, M1); \
+ M3 = _mm_unpackhi_epi64(M0, M1); \
+}
+
+/* Two lane deinterleaving K = 7:
+ * Take 64 interleaved 16-bit integers and deinterleave to 8 packed 128-bit
+ * registers. The operation summarized below. 16 registers are used with the
+ * lower 8 as input and upper 8 as output.
+ *
+ * In - 10101010 10101010 10101010 10101010 ...
+ * Out - 00000000 11111111 00000000 11111111 ...
+ *
+ * Input:
+ * M0:7 - Packed 16-bit integers
+ *
+ * Output:
+ * M8:15 - Deinterleaved packed 16-bit integers
+ */
+#define SSE_DEINTERLEAVE_K7(M0, M1, M2, M3, M4, M5, M6, M7, \
+ M8, M9, M10, M11, M12, M13, M14, M15) \
+{ \
+ M8 = _mm_set_epi8(_I8_SHUFFLE_MASK); \
+ M0 = _mm_shuffle_epi8(M0, M8); \
+ M1 = _mm_shuffle_epi8(M1, M8); \
+ M2 = _mm_shuffle_epi8(M2, M8); \
+ M3 = _mm_shuffle_epi8(M3, M8); \
+ M4 = _mm_shuffle_epi8(M4, M8); \
+ M5 = _mm_shuffle_epi8(M5, M8); \
+ M6 = _mm_shuffle_epi8(M6, M8); \
+ M7 = _mm_shuffle_epi8(M7, M8); \
+ M8 = _mm_unpacklo_epi64(M0, M1); \
+ M9 = _mm_unpackhi_epi64(M0, M1); \
+ M10 = _mm_unpacklo_epi64(M2, M3); \
+ M11 = _mm_unpackhi_epi64(M2, M3); \
+ M12 = _mm_unpacklo_epi64(M4, M5); \
+ M13 = _mm_unpackhi_epi64(M4, M5); \
+ M14 = _mm_unpacklo_epi64(M6, M7); \
+ M15 = _mm_unpackhi_epi64(M6, M7); \
+}
+
+/* Generate branch metrics N = 2:
+ * Compute 16 branch metrics from trellis outputs and input values.
+ *
+ * Input:
+ * M0:3 - 16 x 2 packed 16-bit trellis outputs
+ * M4 - Expanded and packed 16-bit input value
+ *
+ * Output:
+ * M6:7 - 16 computed 16-bit branch metrics
+ */
+#define SSE_BRANCH_METRIC_N2(M0, M1, M2, M3, M4, M6, M7) \
+{ \
+ M0 = _mm_sign_epi16(M4, M0); \
+ M1 = _mm_sign_epi16(M4, M1); \
+ M2 = _mm_sign_epi16(M4, M2); \
+ M3 = _mm_sign_epi16(M4, M3); \
+ M6 = _mm_hadds_epi16(M0, M1); \
+ M7 = _mm_hadds_epi16(M2, M3); \
+}
+
+/* Generate branch metrics N = 4:
+ * Compute 8 branch metrics from trellis outputs and input values. This
+ * macro is reused for N less than 4 where the extra soft input bits are
+ * padded.
+ *
+ * Input:
+ * M0:3 - 8 x 4 packed 16-bit trellis outputs
+ * M4 - Expanded and packed 16-bit input value
+ *
+ * Output:
+ * M5 - 8 computed 16-bit branch metrics
+ */
+#define SSE_BRANCH_METRIC_N4(M0, M1, M2, M3, M4, M5) \
+{ \
+ M0 = _mm_sign_epi16(M4, M0); \
+ M1 = _mm_sign_epi16(M4, M1); \
+ M2 = _mm_sign_epi16(M4, M2); \
+ M3 = _mm_sign_epi16(M4, M3); \
+ M0 = _mm_hadds_epi16(M0, M1); \
+ M1 = _mm_hadds_epi16(M2, M3); \
+ M5 = _mm_hadds_epi16(M0, M1); \
+}
+
+/* Broadcast 16-bit integer
+ * Repeat the low 16-bit integer to all elements of the 128-bit SSE
+ * register. Only AVX2 has a dedicated broadcast instruction; use repeat
+ * unpacks for SSE only architectures. This is a destructive operation and
+ * the source register is overwritten.
+ *
+ * Input:
+ * M0 - Low 16-bit element is read
+ *
+ * Output:
+ * M0 - Contains broadcasted values
+ */
+#ifdef HAVE_AVX2
+#define SSE_BROADCAST(M0) \
+{ \
+ if (avx2_supported) { \
+ M0 = _mm_broadcastw_epi16(M0); \
+ } else { \
+ M0 = _mm_unpacklo_epi16(M0, M0); \
+ M0 = _mm_unpacklo_epi32(M0, M0); \
+ M0 = _mm_unpacklo_epi64(M0, M0); \
+ } \
+}
+#else
+#define SSE_BROADCAST(M0) \
+{ \
+ M0 = _mm_unpacklo_epi16(M0, M0); \
+ M0 = _mm_unpacklo_epi32(M0, M0); \
+ M0 = _mm_unpacklo_epi64(M0, M0); \
+}
+#endif
+
+/* Horizontal minimum
+ * Compute horizontal minimum of packed unsigned 16-bit integers and place
+ * result in the low 16-bit element of the source register. Only SSE 4.1
+ * has a dedicated minpos instruction. One intermediate register is used
+ * if SSE 4.1 is not available. This is a destructive operation and the
+ * source register is overwritten.
+ *
+ * Input:
+ * M0 - Packed unsigned 16-bit integers
+ *
+ * Output:
+ * M0 - Minimum value placed in low 16-bit element
+ */
+#if defined(HAVE_SSE4_1) || defined(HAVE_SSE41)
+#define SSE_MINPOS(M0, M1) \
+{ \
+ if (sse41_supported) { \
+ M0 = _mm_minpos_epu16(M0); \
+ } else { \
+ M1 = _mm_shuffle_epi32(M0, _MM_SHUFFLE(0, 0, 3, 2)); \
+ M0 = _mm_min_epi16(M0, M1); \
+ M1 = _mm_shufflelo_epi16(M0, _MM_SHUFFLE(0, 0, 3, 2)); \
+ M0 = _mm_min_epi16(M0, M1); \
+ M1 = _mm_shufflelo_epi16(M0, _MM_SHUFFLE(0, 0, 0, 1)); \
+ M0 = _mm_min_epi16(M0, M1); \
+ } \
+}
+#else
+#define SSE_MINPOS(M0, M1) \
+{ \
+ M1 = _mm_shuffle_epi32(M0, _MM_SHUFFLE(0, 0, 3, 2)); \
+ M0 = _mm_min_epi16(M0, M1); \
+ M1 = _mm_shufflelo_epi16(M0, _MM_SHUFFLE(0, 0, 3, 2)); \
+ M0 = _mm_min_epi16(M0, M1); \
+ M1 = _mm_shufflelo_epi16(M0, _MM_SHUFFLE(0, 0, 0, 1)); \
+ M0 = _mm_min_epi16(M0, M1); \
+}
+#endif
+
+/* Normalize state metrics K = 5:
+ * Compute 16-wide normalization by subtracting the smallest value from
+ * all values. Inputs are 16 packed 16-bit integers across 2 XMM registers.
+ * Two intermediate registers are used and normalized results are placed
+ * in the originating locations.
+ *
+ * Input:
+ * M0:1 - Path metrics 0:1 (packed 16-bit integers)
+ *
+ * Output:
+ * M0:1 - Normalized path metrics 0:1
+ */
+#define SSE_NORMALIZE_K5(M0, M1, M2, M3) \
+{ \
+ M2 = _mm_min_epi16(M0, M1); \
+ SSE_MINPOS(M2, M3) \
+ SSE_BROADCAST(M2) \
+ M0 = _mm_subs_epi16(M0, M2); \
+ M1 = _mm_subs_epi16(M1, M2); \
+}
+
+/* Normalize state metrics K = 7:
+ * Compute 64-wide normalization by subtracting the smallest value from
+ * all values. Inputs are 8 registers of accumulated sums and 4 temporary
+ * registers. Normalized results are returned in the originating locations.
+ *
+ * Input:
+ * M0:7 - Path metrics 0:7 (packed 16-bit integers)
+ *
+ * Output:
+ * M0:7 - Normalized path metrics 0:7
+ */
+#define SSE_NORMALIZE_K7(M0, M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11) \
+{ \
+ M8 = _mm_min_epi16(M0, M1); \
+ M9 = _mm_min_epi16(M2, M3); \
+ M10 = _mm_min_epi16(M4, M5); \
+ M11 = _mm_min_epi16(M6, M7); \
+ M8 = _mm_min_epi16(M8, M9); \
+ M10 = _mm_min_epi16(M10, M11); \
+ M8 = _mm_min_epi16(M8, M10); \
+ SSE_MINPOS(M8, M9) \
+ SSE_BROADCAST(M8) \
+ M0 = _mm_subs_epi16(M0, M8); \
+ M1 = _mm_subs_epi16(M1, M8); \
+ M2 = _mm_subs_epi16(M2, M8); \
+ M3 = _mm_subs_epi16(M3, M8); \
+ M4 = _mm_subs_epi16(M4, M8); \
+ M5 = _mm_subs_epi16(M5, M8); \
+ M6 = _mm_subs_epi16(M6, M8); \
+ M7 = _mm_subs_epi16(M7, M8); \
+}
+
+/* Combined BMU/PMU (K=5, N=2)
+ * Compute branch metrics followed by path metrics for half rate 16-state
+ * trellis. 8 butterflies are computed. Accumulated path sums are not
+ * preserved and read and written into the same memory location. Normalize
+ * sums if requires.
+ */
+__always_inline static void _sse_metrics_k5_n2(const int16_t *val,
+ const int16_t *out, int16_t *sums, int16_t *paths, int norm)
+{
+ __m128i m0, m1, m2, m3, m4, m5, m6;
+
+ /* (BMU) Load input sequence */
+ m2 = _mm_castpd_si128(_mm_loaddup_pd((double const *) val));
+
+ /* (BMU) Load trellis outputs */
+ m0 = _mm_load_si128((__m128i *) &out[0]);
+ m1 = _mm_load_si128((__m128i *) &out[8]);
+
+ /* (BMU) Compute branch metrics */
+ m0 = _mm_sign_epi16(m2, m0);
+ m1 = _mm_sign_epi16(m2, m1);
+ m2 = _mm_hadds_epi16(m0, m1);
+
+ /* (PMU) Load accumulated path metrics */
+ m0 = _mm_load_si128((__m128i *) &sums[0]);
+ m1 = _mm_load_si128((__m128i *) &sums[8]);
+
+ SSE_DEINTERLEAVE_K5(m0, m1, m3, m4)
+
+ /* (PMU) Butterflies: 0-7 */
+ SSE_BUTTERFLY(m3, m4, m2, m5, m6)
+
+ if (norm)
+ SSE_NORMALIZE_K5(m2, m6, m0, m1)
+
+ _mm_store_si128((__m128i *) &sums[0], m2);
+ _mm_store_si128((__m128i *) &sums[8], m6);
+ _mm_store_si128((__m128i *) &paths[0], m5);
+ _mm_store_si128((__m128i *) &paths[8], m4);
+}
+
+/* Combined BMU/PMU (K=5, N=3 and N=4)
+ * Compute branch metrics followed by path metrics for 16-state and rates
+ * to 1/4. 8 butterflies are computed. The input sequence is read four 16-bit
+ * values at a time, and extra values should be set to zero for rates other
+ * than 1/4. Normally only rates 1/3 and 1/4 are used as there is a
+ * dedicated implementation of rate 1/2.
+ */
+__always_inline static void _sse_metrics_k5_n4(const int16_t *val,
+ const int16_t *out, int16_t *sums, int16_t *paths, int norm)
+{
+ __m128i m0, m1, m2, m3, m4, m5, m6;
+
+ /* (BMU) Load input sequence */
+ m4 = _mm_castpd_si128(_mm_loaddup_pd((double const *) val));
+
+ /* (BMU) Load trellis outputs */
+ m0 = _mm_load_si128((__m128i *) &out[0]);
+ m1 = _mm_load_si128((__m128i *) &out[8]);
+ m2 = _mm_load_si128((__m128i *) &out[16]);
+ m3 = _mm_load_si128((__m128i *) &out[24]);
+
+ SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m4, m2)
+
+ /* (PMU) Load accumulated path metrics */
+ m0 = _mm_load_si128((__m128i *) &sums[0]);
+ m1 = _mm_load_si128((__m128i *) &sums[8]);
+
+ SSE_DEINTERLEAVE_K5(m0, m1, m3, m4)
+
+ /* (PMU) Butterflies: 0-7 */
+ SSE_BUTTERFLY(m3, m4, m2, m5, m6)
+
+ if (norm)
+ SSE_NORMALIZE_K5(m2, m6, m0, m1)
+
+ _mm_store_si128((__m128i *) &sums[0], m2);
+ _mm_store_si128((__m128i *) &sums[8], m6);
+ _mm_store_si128((__m128i *) &paths[0], m5);
+ _mm_store_si128((__m128i *) &paths[8], m4);
+}
+
+/* Combined BMU/PMU (K=7, N=2)
+ * Compute branch metrics followed by path metrics for half rate 64-state
+ * trellis. 32 butterfly operations are computed. Deinterleaving path
+ * metrics requires usage of the full SSE register file, so separate sums
+ * before computing branch metrics to avoid register spilling.
+ */
+__always_inline static void _sse_metrics_k7_n2(const int16_t *val,
+ const int16_t *out, int16_t *sums, int16_t *paths, int norm)
+{
+ __m128i m0, m1, m2, m3, m4, m5, m6, m7, m8,
+ m9, m10, m11, m12, m13, m14, m15;
+
+ /* (PMU) Load accumulated path metrics */
+ m0 = _mm_load_si128((__m128i *) &sums[0]);
+ m1 = _mm_load_si128((__m128i *) &sums[8]);
+ m2 = _mm_load_si128((__m128i *) &sums[16]);
+ m3 = _mm_load_si128((__m128i *) &sums[24]);
+ m4 = _mm_load_si128((__m128i *) &sums[32]);
+ m5 = _mm_load_si128((__m128i *) &sums[40]);
+ m6 = _mm_load_si128((__m128i *) &sums[48]);
+ m7 = _mm_load_si128((__m128i *) &sums[56]);
+
+ /* (PMU) Deinterleave to even-odd registers */
+ SSE_DEINTERLEAVE_K7(m0, m1, m2, m3 ,m4 ,m5, m6, m7,
+ m8, m9, m10, m11, m12, m13, m14, m15)
+
+ /* (BMU) Load input symbols */
+ m7 = _mm_castpd_si128(_mm_loaddup_pd((double const *) val));
+
+ /* (BMU) Load trellis outputs */
+ m0 = _mm_load_si128((__m128i *) &out[0]);
+ m1 = _mm_load_si128((__m128i *) &out[8]);
+ m2 = _mm_load_si128((__m128i *) &out[16]);
+ m3 = _mm_load_si128((__m128i *) &out[24]);
+
+ SSE_BRANCH_METRIC_N2(m0, m1, m2, m3, m7, m4, m5)
+
+ m0 = _mm_load_si128((__m128i *) &out[32]);
+ m1 = _mm_load_si128((__m128i *) &out[40]);
+ m2 = _mm_load_si128((__m128i *) &out[48]);
+ m3 = _mm_load_si128((__m128i *) &out[56]);
+
+ SSE_BRANCH_METRIC_N2(m0, m1, m2, m3, m7, m6, m7)
+
+ /* (PMU) Butterflies: 0-15 */
+ SSE_BUTTERFLY(m8, m9, m4, m0, m1)
+ SSE_BUTTERFLY(m10, m11, m5, m2, m3)
+
+ _mm_store_si128((__m128i *) &paths[0], m0);
+ _mm_store_si128((__m128i *) &paths[8], m2);
+ _mm_store_si128((__m128i *) &paths[32], m9);
+ _mm_store_si128((__m128i *) &paths[40], m11);
+
+ /* (PMU) Butterflies: 17-31 */
+ SSE_BUTTERFLY(m12, m13, m6, m0, m2)
+ SSE_BUTTERFLY(m14, m15, m7, m9, m11)
+
+ _mm_store_si128((__m128i *) &paths[16], m0);
+ _mm_store_si128((__m128i *) &paths[24], m9);
+ _mm_store_si128((__m128i *) &paths[48], m13);
+ _mm_store_si128((__m128i *) &paths[56], m15);
+
+ if (norm)
+ SSE_NORMALIZE_K7(m4, m1, m5, m3, m6, m2,
+ m7, m11, m0, m8, m9, m10)
+
+ _mm_store_si128((__m128i *) &sums[0], m4);
+ _mm_store_si128((__m128i *) &sums[8], m5);
+ _mm_store_si128((__m128i *) &sums[16], m6);
+ _mm_store_si128((__m128i *) &sums[24], m7);
+ _mm_store_si128((__m128i *) &sums[32], m1);
+ _mm_store_si128((__m128i *) &sums[40], m3);
+ _mm_store_si128((__m128i *) &sums[48], m2);
+ _mm_store_si128((__m128i *) &sums[56], m11);
+}
+
+/* Combined BMU/PMU (K=7, N=3 and N=4)
+ * Compute branch metrics followed by path metrics for half rate 64-state
+ * trellis. 32 butterfly operations are computed. Deinterleave path
+ * metrics before computing branch metrics as in the half rate case.
+ */
+__always_inline static void _sse_metrics_k7_n4(const int16_t *val,
+ const int16_t *out, int16_t *sums, int16_t *paths, int norm)
+{
+ __m128i m0, m1, m2, m3, m4, m5, m6, m7;
+ __m128i m8, m9, m10, m11, m12, m13, m14, m15;
+
+ /* (PMU) Load accumulated path metrics */
+ m0 = _mm_load_si128((__m128i *) &sums[0]);
+ m1 = _mm_load_si128((__m128i *) &sums[8]);
+ m2 = _mm_load_si128((__m128i *) &sums[16]);
+ m3 = _mm_load_si128((__m128i *) &sums[24]);
+ m4 = _mm_load_si128((__m128i *) &sums[32]);
+ m5 = _mm_load_si128((__m128i *) &sums[40]);
+ m6 = _mm_load_si128((__m128i *) &sums[48]);
+ m7 = _mm_load_si128((__m128i *) &sums[56]);
+
+ /* (PMU) Deinterleave into even and odd packed registers */
+ SSE_DEINTERLEAVE_K7(m0, m1, m2, m3 ,m4 ,m5, m6, m7,
+ m8, m9, m10, m11, m12, m13, m14, m15)
+
+ /* (BMU) Load and expand 8-bit input out to 16-bits */
+ m7 = _mm_castpd_si128(_mm_loaddup_pd((double const *) val));
+
+ /* (BMU) Load and compute branch metrics */
+ m0 = _mm_load_si128((__m128i *) &out[0]);
+ m1 = _mm_load_si128((__m128i *) &out[8]);
+ m2 = _mm_load_si128((__m128i *) &out[16]);
+ m3 = _mm_load_si128((__m128i *) &out[24]);
+
+ SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m7, m4)
+
+ m0 = _mm_load_si128((__m128i *) &out[32]);
+ m1 = _mm_load_si128((__m128i *) &out[40]);
+ m2 = _mm_load_si128((__m128i *) &out[48]);
+ m3 = _mm_load_si128((__m128i *) &out[56]);
+
+ SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m7, m5)
+
+ m0 = _mm_load_si128((__m128i *) &out[64]);
+ m1 = _mm_load_si128((__m128i *) &out[72]);
+ m2 = _mm_load_si128((__m128i *) &out[80]);
+ m3 = _mm_load_si128((__m128i *) &out[88]);
+
+ SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m7, m6)
+
+ m0 = _mm_load_si128((__m128i *) &out[96]);
+ m1 = _mm_load_si128((__m128i *) &out[104]);
+ m2 = _mm_load_si128((__m128i *) &out[112]);
+ m3 = _mm_load_si128((__m128i *) &out[120]);
+
+ SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m7, m7)
+
+ /* (PMU) Butterflies: 0-15 */
+ SSE_BUTTERFLY(m8, m9, m4, m0, m1)
+ SSE_BUTTERFLY(m10, m11, m5, m2, m3)
+
+ _mm_store_si128((__m128i *) &paths[0], m0);
+ _mm_store_si128((__m128i *) &paths[8], m2);
+ _mm_store_si128((__m128i *) &paths[32], m9);
+ _mm_store_si128((__m128i *) &paths[40], m11);
+
+ /* (PMU) Butterflies: 17-31 */
+ SSE_BUTTERFLY(m12, m13, m6, m0, m2)
+ SSE_BUTTERFLY(m14, m15, m7, m9, m11)
+
+ _mm_store_si128((__m128i *) &paths[16], m0);
+ _mm_store_si128((__m128i *) &paths[24], m9);
+ _mm_store_si128((__m128i *) &paths[48], m13);
+ _mm_store_si128((__m128i *) &paths[56], m15);
+
+ if (norm)
+ SSE_NORMALIZE_K7(m4, m1, m5, m3, m6, m2,
+ m7, m11, m0, m8, m9, m10)
+
+ _mm_store_si128((__m128i *) &sums[0], m4);
+ _mm_store_si128((__m128i *) &sums[8], m5);
+ _mm_store_si128((__m128i *) &sums[16], m6);
+ _mm_store_si128((__m128i *) &sums[24], m7);
+ _mm_store_si128((__m128i *) &sums[32], m1);
+ _mm_store_si128((__m128i *) &sums[40], m3);
+ _mm_store_si128((__m128i *) &sums[48], m2);
+ _mm_store_si128((__m128i *) &sums[56], m11);
+}
+
+/* Aligned Memory Allocator
+ * SSE requires 16-byte memory alignment. We store relevant trellis values
+ * (accumulated sums, outputs, and path decisions) as 16 bit signed integers
+ * so the allocated memory is casted as such.
+ */
+__attribute__ ((visibility("hidden")))
+int16_t *osmo_conv_vdec_malloc_sse3(size_t n)
+{
+ return (int16_t *) _mm_malloc(sizeof(int16_t) * n, SSE_ALIGN);
+}
+
+__attribute__ ((visibility("hidden")))
+void osmo_conv_vdec_free_sse3(int16_t *ptr)
+{
+ _mm_free(ptr);
+}
+
+__attribute__ ((visibility("hidden")))
+void osmo_conv_gen_metrics_k5_n2_sse(const int8_t *val, const int16_t *out,
+ int16_t *sums, int16_t *paths, int norm)
+{
+ const int16_t _val[4] = { val[0], val[1], val[0], val[1] };
+
+ _sse_metrics_k5_n2(_val, out, sums, paths, norm);
+}
+
+__attribute__ ((visibility("hidden")))
+void osmo_conv_gen_metrics_k5_n3_sse(const int8_t *val, const int16_t *out,
+ int16_t *sums, int16_t *paths, int norm)
+{
+ const int16_t _val[4] = { val[0], val[1], val[2], 0 };
+
+ _sse_metrics_k5_n4(_val, out, sums, paths, norm);
+}
+
+__attribute__ ((visibility("hidden")))
+void osmo_conv_gen_metrics_k5_n4_sse(const int8_t *val, const int16_t *out,
+ int16_t *sums, int16_t *paths, int norm)
+{
+ const int16_t _val[4] = { val[0], val[1], val[2], val[3] };
+
+ _sse_metrics_k5_n4(_val, out, sums, paths, norm);
+}
+
+__attribute__ ((visibility("hidden")))
+void osmo_conv_gen_metrics_k7_n2_sse(const int8_t *val, const int16_t *out,
+ int16_t *sums, int16_t *paths, int norm)
+{
+ const int16_t _val[4] = { val[0], val[1], val[0], val[1] };
+
+ _sse_metrics_k7_n2(_val, out, sums, paths, norm);
+}
+
+__attribute__ ((visibility("hidden")))
+void osmo_conv_gen_metrics_k7_n3_sse(const int8_t *val, const int16_t *out,
+ int16_t *sums, int16_t *paths, int norm)
+{
+ const int16_t _val[4] = { val[0], val[1], val[2], 0 };
+
+ _sse_metrics_k7_n4(_val, out, sums, paths, norm);
+}
+
+__attribute__ ((visibility("hidden")))
+void osmo_conv_gen_metrics_k7_n4_sse(const int8_t *val, const int16_t *out,
+ int16_t *sums, int16_t *paths, int norm)
+{
+ const int16_t _val[4] = { val[0], val[1], val[2], val[3] };
+
+ _sse_metrics_k7_n4(_val, out, sums, paths, norm);
+}