dect
/
linux-2.6
Archived
13
0
Fork 0

crypto: twofish-avx - tune assembler code for more performance

Patch replaces 'movb' instructions with 'movzbl' to break false register
dependencies and interleaves instructions better for out-of-order scheduling.

Tested on Intel Core i5-2450M and AMD FX-8100.

tcrypt ECB results:

Intel Core i5-2450M:

size    old-vs-new      new-vs-3way     old-vs-3way
        enc     dec     enc     dec     enc     dec
256     1.12x   1.13x   1.36x   1.37x   1.21x   1.22x
1k      1.14x   1.14x   1.48x   1.49x   1.29x   1.31x
8k      1.14x   1.14x   1.50x   1.52x   1.32x   1.33x

AMD FX-8100:

size    old-vs-new      new-vs-3way     old-vs-3way
        enc     dec     enc     dec     enc     dec
256     1.10x   1.11x   1.01x   1.01x   0.92x   0.91x
1k      1.11x   1.12x   1.08x   1.07x   0.97x   0.96x
8k      1.11x   1.13x   1.10x   1.08x   0.99x   0.97x

[v2]
 - Do instruction interleaving another way to avoid adding new FPU<=>CPU
   register moves as these cause performance drop on Bulldozer.
 - Further interleaving improvements for better out-of-order scheduling.

Tested-by: Borislav Petkov <bp@alien8.de>
Cc: Johannes Goetzfried <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Jussi Kivilinna 2012-08-28 14:24:43 +03:00 committed by Herbert Xu
parent 49d30d3d5f
commit f94a73f8dd
1 changed files with 142 additions and 85 deletions

View File

@ -4,6 +4,8 @@
* Copyright (C) 2012 Johannes Goetzfried
* <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
*
* Copyright © 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
@ -47,16 +49,22 @@
#define RC2 %xmm6
#define RD2 %xmm7
#define RX %xmm8
#define RY %xmm9
#define RX0 %xmm8
#define RY0 %xmm9
#define RK1 %xmm10
#define RK2 %xmm11
#define RX1 %xmm10
#define RY1 %xmm11
#define RID1 %rax
#define RID1b %al
#define RID2 %rbx
#define RID2b %bl
#define RK1 %xmm12
#define RK2 %xmm13
#define RT %xmm14
#define RR %xmm15
#define RID1 %rbp
#define RID1d %ebp
#define RID2 %rsi
#define RID2d %esi
#define RGI1 %rdx
#define RGI1bl %dl
@ -65,6 +73,13 @@
#define RGI2bl %cl
#define RGI2bh %ch
#define RGI3 %rax
#define RGI3bl %al
#define RGI3bh %ah
#define RGI4 %rbx
#define RGI4bl %bl
#define RGI4bh %bh
#define RGS1 %r8
#define RGS1d %r8d
#define RGS2 %r9
@ -73,89 +88,123 @@
#define RGS3d %r10d
#define lookup_32bit(t0, t1, t2, t3, src, dst) \
movb src ## bl, RID1b; \
movb src ## bh, RID2b; \
movl t0(CTX, RID1, 4), dst ## d; \
xorl t1(CTX, RID2, 4), dst ## d; \
#define lookup_32bit(t0, t1, t2, t3, src, dst, interleave_op, il_reg) \
movzbl src ## bl, RID1d; \
movzbl src ## bh, RID2d; \
shrq $16, src; \
movb src ## bl, RID1b; \
movb src ## bh, RID2b; \
movl t0(CTX, RID1, 4), dst ## d; \
movl t1(CTX, RID2, 4), RID2d; \
movzbl src ## bl, RID1d; \
xorl RID2d, dst ## d; \
movzbl src ## bh, RID2d; \
interleave_op(il_reg); \
xorl t2(CTX, RID1, 4), dst ## d; \
xorl t3(CTX, RID2, 4), dst ## d;
#define G(a, x, t0, t1, t2, t3) \
vmovq a, RGI1; \
vpsrldq $8, a, x; \
vmovq x, RGI2; \
\
lookup_32bit(t0, t1, t2, t3, RGI1, RGS1); \
shrq $16, RGI1; \
lookup_32bit(t0, t1, t2, t3, RGI1, RGS2); \
shlq $32, RGS2; \
orq RGS1, RGS2; \
\
lookup_32bit(t0, t1, t2, t3, RGI2, RGS1); \
shrq $16, RGI2; \
lookup_32bit(t0, t1, t2, t3, RGI2, RGS3); \
shlq $32, RGS3; \
orq RGS1, RGS3; \
\
vmovq RGS2, x; \
vpinsrq $1, RGS3, x, x;
#define dummy(d) /* do nothing */
#define encround(a, b, c, d, x, y) \
G(a, x, s0, s1, s2, s3); \
G(b, y, s1, s2, s3, s0); \
#define shr_next(reg) \
shrq $16, reg;
#define G(gi1, gi2, x, t0, t1, t2, t3) \
lookup_32bit(t0, t1, t2, t3, ##gi1, RGS1, shr_next, ##gi1); \
lookup_32bit(t0, t1, t2, t3, ##gi2, RGS3, shr_next, ##gi2); \
\
lookup_32bit(t0, t1, t2, t3, ##gi1, RGS2, dummy, none); \
shlq $32, RGS2; \
orq RGS1, RGS2; \
lookup_32bit(t0, t1, t2, t3, ##gi2, RGS1, dummy, none); \
shlq $32, RGS1; \
orq RGS1, RGS3;
#define round_head_2(a, b, x1, y1, x2, y2) \
vmovq b ## 1, RGI3; \
vpextrq $1, b ## 1, RGI4; \
\
G(RGI1, RGI2, x1, s0, s1, s2, s3); \
vmovq a ## 2, RGI1; \
vpextrq $1, a ## 2, RGI2; \
vmovq RGS2, x1; \
vpinsrq $1, RGS3, x1, x1; \
\
G(RGI3, RGI4, y1, s1, s2, s3, s0); \
vmovq b ## 2, RGI3; \
vpextrq $1, b ## 2, RGI4; \
vmovq RGS2, y1; \
vpinsrq $1, RGS3, y1, y1; \
\
G(RGI1, RGI2, x2, s0, s1, s2, s3); \
vmovq RGS2, x2; \
vpinsrq $1, RGS3, x2, x2; \
\
G(RGI3, RGI4, y2, s1, s2, s3, s0); \
vmovq RGS2, y2; \
vpinsrq $1, RGS3, y2, y2;
#define encround_tail(a, b, c, d, x, y, prerotate) \
vpaddd x, y, x; \
vpaddd x, RK1, RT;\
prerotate(b); \
vpxor RT, c, c; \
vpaddd y, x, y; \
vpaddd x, RK1, x; \
vpaddd y, RK2, y; \
vpxor x, c, c; \
vpsrld $1, c, x; \
vpsrld $1, c, RT; \
vpslld $(32 - 1), c, c; \
vpor c, x, c; \
vpslld $1, d, x; \
vpsrld $(32 - 1), d, d; \
vpor d, x, d; \
vpxor d, y, d;
vpor c, RT, c; \
vpxor d, y, d; \
#define decround(a, b, c, d, x, y) \
G(a, x, s0, s1, s2, s3); \
G(b, y, s1, s2, s3, s0); \
#define decround_tail(a, b, c, d, x, y, prerotate) \
vpaddd x, y, x; \
vpaddd x, RK1, RT;\
prerotate(a); \
vpxor RT, c, c; \
vpaddd y, x, y; \
vpaddd y, RK2, y; \
vpxor d, y, d; \
vpsrld $1, d, y; \
vpslld $(32 - 1), d, d; \
vpor d, y, d; \
vpslld $1, c, y; \
vpsrld $(32 - 1), c, c; \
vpor c, y, c; \
vpaddd x, RK1, x; \
vpxor x, c, c;
#define encrypt_round(n, a, b, c, d) \
vbroadcastss (k+4*(2*(n)))(CTX), RK1; \
vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \
encround(a ## 1, b ## 1, c ## 1, d ## 1, RX, RY); \
encround(a ## 2, b ## 2, c ## 2, d ## 2, RX, RY);
#define rotate_1l(x) \
vpslld $1, x, RR; \
vpsrld $(32 - 1), x, x; \
vpor x, RR, x;
#define decrypt_round(n, a, b, c, d) \
vbroadcastss (k+4*(2*(n)))(CTX), RK1; \
vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \
decround(a ## 1, b ## 1, c ## 1, d ## 1, RX, RY); \
decround(a ## 2, b ## 2, c ## 2, d ## 2, RX, RY);
#define preload_rgi(c) \
vmovq c, RGI1; \
vpextrq $1, c, RGI2;
#define encrypt_round(n, a, b, c, d, preload, prerotate) \
vbroadcastss (k+4*(2*(n)))(CTX), RK1; \
vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \
round_head_2(a, b, RX0, RY0, RX1, RY1); \
encround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \
preload(c ## 1); \
encround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate);
#define decrypt_round(n, a, b, c, d, preload, prerotate) \
vbroadcastss (k+4*(2*(n)))(CTX), RK1; \
vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \
round_head_2(a, b, RX0, RY0, RX1, RY1); \
decround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \
preload(c ## 1); \
decround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate);
#define encrypt_cycle(n) \
encrypt_round((2*n), RA, RB, RC, RD); \
encrypt_round(((2*n) + 1), RC, RD, RA, RB);
encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \
encrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l);
#define encrypt_cycle_last(n) \
encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \
encrypt_round(((2*n) + 1), RC, RD, RA, RB, dummy, dummy);
#define decrypt_cycle(n) \
decrypt_round(((2*n) + 1), RC, RD, RA, RB); \
decrypt_round((2*n), RA, RB, RC, RD);
decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \
decrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l);
#define decrypt_cycle_last(n) \
decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \
decrypt_round((2*n), RA, RB, RC, RD, dummy, dummy);
#define transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \
vpunpckldq x1, x0, t0; \
@ -216,17 +265,20 @@ __twofish_enc_blk_8way:
* %rcx: bool, if true: xor output
*/
pushq %rbp;
pushq %rbx;
pushq %rcx;
vmovdqu w(CTX), RK1;
leaq (4*4*4)(%rdx), %rax;
inpack_blocks(%rdx, RA1, RB1, RC1, RD1, RK1, RX, RY, RK2);
inpack_blocks(%rax, RA2, RB2, RC2, RD2, RK1, RX, RY, RK2);
inpack_blocks(%rdx, RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2);
preload_rgi(RA1);
rotate_1l(RD1);
inpack_blocks(%rax, RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2);
rotate_1l(RD2);
xorq RID1, RID1;
xorq RID2, RID2;
movq %rsi, %r11;
encrypt_cycle(0);
encrypt_cycle(1);
@ -235,26 +287,27 @@ __twofish_enc_blk_8way:
encrypt_cycle(4);
encrypt_cycle(5);
encrypt_cycle(6);
encrypt_cycle(7);
encrypt_cycle_last(7);
vmovdqu (w+4*4)(CTX), RK1;
popq %rcx;
popq %rbx;
popq %rbp;
leaq (4*4*4)(%rsi), %rax;
leaq (4*4*4)(%r11), %rax;
testb %cl, %cl;
jnz __enc_xor8;
outunpack_blocks(%rsi, RC1, RD1, RA1, RB1, RK1, RX, RY, RK2);
outunpack_blocks(%rax, RC2, RD2, RA2, RB2, RK1, RX, RY, RK2);
outunpack_blocks(%r11, RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2);
outunpack_blocks(%rax, RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2);
ret;
__enc_xor8:
outunpack_xor_blocks(%rsi, RC1, RD1, RA1, RB1, RK1, RX, RY, RK2);
outunpack_xor_blocks(%rax, RC2, RD2, RA2, RB2, RK1, RX, RY, RK2);
outunpack_xor_blocks(%r11, RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2);
outunpack_xor_blocks(%rax, RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2);
ret;
@ -269,16 +322,19 @@ twofish_dec_blk_8way:
* %rdx: src
*/
pushq %rbp;
pushq %rbx;
vmovdqu (w+4*4)(CTX), RK1;
leaq (4*4*4)(%rdx), %rax;
inpack_blocks(%rdx, RC1, RD1, RA1, RB1, RK1, RX, RY, RK2);
inpack_blocks(%rax, RC2, RD2, RA2, RB2, RK1, RX, RY, RK2);
inpack_blocks(%rdx, RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2);
preload_rgi(RC1);
rotate_1l(RA1);
inpack_blocks(%rax, RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2);
rotate_1l(RA2);
xorq RID1, RID1;
xorq RID2, RID2;
movq %rsi, %r11;
decrypt_cycle(7);
decrypt_cycle(6);
@ -287,14 +343,15 @@ twofish_dec_blk_8way:
decrypt_cycle(3);
decrypt_cycle(2);
decrypt_cycle(1);
decrypt_cycle(0);
decrypt_cycle_last(0);
vmovdqu (w)(CTX), RK1;
popq %rbx;
popq %rbp;
leaq (4*4*4)(%rsi), %rax;
outunpack_blocks(%rsi, RA1, RB1, RC1, RD1, RK1, RX, RY, RK2);
outunpack_blocks(%rax, RA2, RB2, RC2, RD2, RK1, RX, RY, RK2);
leaq (4*4*4)(%r11), %rax;
outunpack_blocks(%r11, RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2);
outunpack_blocks(%rax, RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2);
ret;