dect
/
linux-2.6
Archived
13
0
Fork 0

x86: EFI runtime service support: remove duplicated code from efi_32.c

This patch removes the duplicated code between efi_32.c and efi.c.

Signed-off-by: Huang Ying <ying.huang@intel.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
Huang, Ying 2008-01-30 13:31:19 +01:00 committed by Ingo Molnar
parent 9ad65e4748
commit e429795c68
5 changed files with 47 additions and 443 deletions

View File

@ -38,7 +38,7 @@ obj-$(CONFIG_X86_SUMMIT_NUMA) += summit_32.o
obj-$(CONFIG_KPROBES) += kprobes_32.o
obj-$(CONFIG_MODULES) += module_32.o
obj-$(CONFIG_ACPI_SRAT) += srat_32.o
obj-$(CONFIG_EFI) += efi_32.o efi_stub_32.o
obj-$(CONFIG_EFI) += efi.o efi_32.o efi_stub_32.o
obj-$(CONFIG_DOUBLEFAULT) += doublefault_32.o
obj-$(CONFIG_VM86) += vm86_32.o
obj-$(CONFIG_EARLY_PRINTK) += early_printk.o

View File

@ -17,11 +17,6 @@
#include <asm/e820.h>
#include <asm/setup.h>
#ifdef CONFIG_EFI
int efi_enabled = 0;
EXPORT_SYMBOL(efi_enabled);
#endif
struct e820map e820;
struct change_member {
struct e820entry *pbios; /* pointer to original bios entry */

View File

@ -39,21 +39,8 @@
#include <asm/desc.h>
#include <asm/tlbflush.h>
#define EFI_DEBUG 0
#define PFX "EFI: "
extern efi_status_t asmlinkage efi_call_phys(void *, ...);
struct efi efi;
EXPORT_SYMBOL(efi);
static struct efi efi_phys;
struct efi_memory_map memmap;
/*
* We require an early boot_ioremap mapping mechanism initially
*/
extern void * boot_ioremap(unsigned long, unsigned long);
/*
* To make EFI call EFI runtime service in physical addressing mode we need
* prelog/epilog before/after the invocation to disable interrupt, to
@ -65,7 +52,7 @@ static unsigned long efi_rt_eflags;
static DEFINE_SPINLOCK(efi_rt_lock);
static pgd_t efi_bak_pg_dir_pointer[2];
static void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
{
unsigned long cr4;
unsigned long temp;
@ -108,7 +95,7 @@ static void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
load_gdt(&gdt_descr);
}
static void efi_call_phys_epilog(void) __releases(efi_rt_lock)
void efi_call_phys_epilog(void) __releases(efi_rt_lock)
{
unsigned long cr4;
struct desc_ptr gdt_descr;
@ -138,87 +125,6 @@ static void efi_call_phys_epilog(void) __releases(efi_rt_lock)
spin_unlock(&efi_rt_lock);
}
static efi_status_t
phys_efi_set_virtual_address_map(unsigned long memory_map_size,
unsigned long descriptor_size,
u32 descriptor_version,
efi_memory_desc_t *virtual_map)
{
efi_status_t status;
efi_call_phys_prelog();
status = efi_call_phys(efi_phys.set_virtual_address_map,
memory_map_size, descriptor_size,
descriptor_version, virtual_map);
efi_call_phys_epilog();
return status;
}
static efi_status_t
phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
{
efi_status_t status;
efi_call_phys_prelog();
status = efi_call_phys(efi_phys.get_time, tm, tc);
efi_call_phys_epilog();
return status;
}
inline int efi_set_rtc_mmss(unsigned long nowtime)
{
int real_seconds, real_minutes;
efi_status_t status;
efi_time_t eft;
efi_time_cap_t cap;
spin_lock(&efi_rt_lock);
status = efi.get_time(&eft, &cap);
spin_unlock(&efi_rt_lock);
if (status != EFI_SUCCESS)
panic("Ooops, efitime: can't read time!\n");
real_seconds = nowtime % 60;
real_minutes = nowtime / 60;
if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
real_minutes += 30;
real_minutes %= 60;
eft.minute = real_minutes;
eft.second = real_seconds;
if (status != EFI_SUCCESS) {
printk("Ooops: efitime: can't read time!\n");
return -1;
}
return 0;
}
/*
* This is used during kernel init before runtime
* services have been remapped and also during suspend, therefore,
* we'll need to call both in physical and virtual modes.
*/
inline unsigned long efi_get_time(void)
{
efi_status_t status;
efi_time_t eft;
efi_time_cap_t cap;
if (efi.get_time) {
/* if we are in virtual mode use remapped function */
status = efi.get_time(&eft, &cap);
} else {
/* we are in physical mode */
status = phys_efi_get_time(&eft, &cap);
}
if (status != EFI_SUCCESS)
printk("Oops: efitime: can't read time status: 0x%lx\n",status);
return mktime(eft.year, eft.month, eft.day, eft.hour,
eft.minute, eft.second);
}
int is_available_memory(efi_memory_desc_t * md)
{
if (!(md->attribute & EFI_MEMORY_WB))
@ -250,24 +156,6 @@ void __init efi_map_memmap(void)
memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
}
#if EFI_DEBUG
static void __init print_efi_memmap(void)
{
efi_memory_desc_t *md;
void *p;
int i;
for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
md = p;
printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
"range=[0x%016llx-0x%016llx) (%lluMB)\n",
i, md->type, md->attribute, md->phys_addr,
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
}
}
#endif /* EFI_DEBUG */
/*
* Walks the EFI memory map and calls CALLBACK once for each EFI
* memory descriptor that has memory that is available for kernel use.
@ -319,288 +207,6 @@ void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
}
}
void __init efi_init(void)
{
efi_config_table_t *config_tables;
efi_runtime_services_t *runtime;
efi_char16_t *c16;
char vendor[100] = "unknown";
unsigned long num_config_tables;
int i = 0;
memset(&efi, 0, sizeof(efi) );
memset(&efi_phys, 0, sizeof(efi_phys));
efi_phys.systab =
(efi_system_table_t *)boot_params.efi_info.efi_systab;
memmap.phys_map = (void *)boot_params.efi_info.efi_memmap;
memmap.nr_map = boot_params.efi_info.efi_memmap_size/
boot_params.efi_info.efi_memdesc_size;
memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
efi.systab = (efi_system_table_t *)
boot_ioremap((unsigned long) efi_phys.systab,
sizeof(efi_system_table_t));
/*
* Verify the EFI Table
*/
if (efi.systab == NULL)
printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
if ((efi.systab->hdr.revision >> 16) == 0)
printk(KERN_ERR PFX "Warning: EFI system table version "
"%d.%02d, expected 1.00 or greater\n",
efi.systab->hdr.revision >> 16,
efi.systab->hdr.revision & 0xffff);
/*
* Grab some details from the system table
*/
num_config_tables = efi.systab->nr_tables;
config_tables = (efi_config_table_t *)efi.systab->tables;
runtime = efi.systab->runtime;
/*
* Show what we know for posterity
*/
c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
if (c16) {
for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i)
vendor[i] = *c16++;
vendor[i] = '\0';
} else
printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
efi.systab->hdr.revision >> 16,
efi.systab->hdr.revision & 0xffff, vendor);
/*
* Let's see what config tables the firmware passed to us.
*/
config_tables = (efi_config_table_t *)
boot_ioremap((unsigned long) config_tables,
num_config_tables * sizeof(efi_config_table_t));
if (config_tables == NULL)
printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
efi.mps = EFI_INVALID_TABLE_ADDR;
efi.acpi = EFI_INVALID_TABLE_ADDR;
efi.acpi20 = EFI_INVALID_TABLE_ADDR;
efi.smbios = EFI_INVALID_TABLE_ADDR;
efi.sal_systab = EFI_INVALID_TABLE_ADDR;
efi.boot_info = EFI_INVALID_TABLE_ADDR;
efi.hcdp = EFI_INVALID_TABLE_ADDR;
efi.uga = EFI_INVALID_TABLE_ADDR;
for (i = 0; i < num_config_tables; i++) {
if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
efi.mps = config_tables[i].table;
printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
} else
if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
efi.acpi20 = config_tables[i].table;
printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
} else
if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
efi.acpi = config_tables[i].table;
printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
} else
if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
efi.smbios = config_tables[i].table;
printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
} else
if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
efi.hcdp = config_tables[i].table;
printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
} else
if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
efi.uga = config_tables[i].table;
printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
}
}
printk("\n");
/*
* Check out the runtime services table. We need to map
* the runtime services table so that we can grab the physical
* address of several of the EFI runtime functions, needed to
* set the firmware into virtual mode.
*/
runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
runtime,
sizeof(efi_runtime_services_t));
if (runtime != NULL) {
/*
* We will only need *early* access to the following
* two EFI runtime services before set_virtual_address_map
* is invoked.
*/
efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
efi_phys.set_virtual_address_map =
(efi_set_virtual_address_map_t *)
runtime->set_virtual_address_map;
} else
printk(KERN_ERR PFX "Could not map the runtime service table!\n");
/* Map the EFI memory map for use until paging_init() */
memmap.map = boot_ioremap(boot_params.efi_info.efi_memmap,
boot_params.efi_info.efi_memmap_size);
if (memmap.map == NULL)
printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
#if EFI_DEBUG
print_efi_memmap();
#endif
}
static inline void __init check_range_for_systab(efi_memory_desc_t *md)
{
if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
((unsigned long)efi_phys.systab < md->phys_addr +
((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
unsigned long addr;
addr = md->virt_addr - md->phys_addr +
(unsigned long)efi_phys.systab;
efi.systab = (efi_system_table_t *)addr;
}
}
/*
* Wrap all the virtual calls in a way that forces the parameters on the stack.
*/
#define efi_call_virt(f, args...) \
((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args)
static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
{
return efi_call_virt(get_time, tm, tc);
}
static efi_status_t virt_efi_set_time (efi_time_t *tm)
{
return efi_call_virt(set_time, tm);
}
static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled,
efi_bool_t *pending,
efi_time_t *tm)
{
return efi_call_virt(get_wakeup_time, enabled, pending, tm);
}
static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled,
efi_time_t *tm)
{
return efi_call_virt(set_wakeup_time, enabled, tm);
}
static efi_status_t virt_efi_get_variable (efi_char16_t *name,
efi_guid_t *vendor, u32 *attr,
unsigned long *data_size, void *data)
{
return efi_call_virt(get_variable, name, vendor, attr, data_size, data);
}
static efi_status_t virt_efi_get_next_variable (unsigned long *name_size,
efi_char16_t *name,
efi_guid_t *vendor)
{
return efi_call_virt(get_next_variable, name_size, name, vendor);
}
static efi_status_t virt_efi_set_variable (efi_char16_t *name,
efi_guid_t *vendor,
unsigned long attr,
unsigned long data_size, void *data)
{
return efi_call_virt(set_variable, name, vendor, attr, data_size, data);
}
static efi_status_t virt_efi_get_next_high_mono_count (u32 *count)
{
return efi_call_virt(get_next_high_mono_count, count);
}
static void virt_efi_reset_system (int reset_type, efi_status_t status,
unsigned long data_size,
efi_char16_t *data)
{
efi_call_virt(reset_system, reset_type, status, data_size, data);
}
/*
* This function will switch the EFI runtime services to virtual mode.
* Essentially, look through the EFI memmap and map every region that
* has the runtime attribute bit set in its memory descriptor and update
* that memory descriptor with the virtual address obtained from ioremap().
* This enables the runtime services to be called without having to
* thunk back into physical mode for every invocation.
*/
void __init efi_enter_virtual_mode(void)
{
efi_memory_desc_t *md;
efi_status_t status;
void *p;
efi.systab = NULL;
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
md = p;
if (!(md->attribute & EFI_MEMORY_RUNTIME))
continue;
md->virt_addr = (unsigned long)ioremap(md->phys_addr,
md->num_pages << EFI_PAGE_SHIFT);
if (!(unsigned long)md->virt_addr) {
printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
(unsigned long)md->phys_addr);
}
/* update the virtual address of the EFI system table */
check_range_for_systab(md);
}
BUG_ON(!efi.systab);
status = phys_efi_set_virtual_address_map(
memmap.desc_size * memmap.nr_map,
memmap.desc_size,
memmap.desc_version,
memmap.phys_map);
if (status != EFI_SUCCESS) {
printk (KERN_ALERT "You are screwed! "
"Unable to switch EFI into virtual mode "
"(status=%lx)\n", status);
panic("EFI call to SetVirtualAddressMap() failed!");
}
/*
* Now that EFI is in virtual mode, update the function
* pointers in the runtime service table to the new virtual addresses.
*/
efi.get_time = virt_efi_get_time;
efi.set_time = virt_efi_set_time;
efi.get_wakeup_time = virt_efi_get_wakeup_time;
efi.set_wakeup_time = virt_efi_set_wakeup_time;
efi.get_variable = virt_efi_get_variable;
efi.get_next_variable = virt_efi_get_next_variable;
efi.set_variable = virt_efi_set_variable;
efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
efi.reset_system = virt_efi_reset_system;
}
void __init
efi_initialize_iomem_resources(struct resource *code_resource,
struct resource *data_resource,
@ -683,35 +289,3 @@ efi_initialize_iomem_resources(struct resource *code_resource,
}
}
}
/*
* Convenience functions to obtain memory types and attributes
*/
u32 efi_mem_type(unsigned long phys_addr)
{
efi_memory_desc_t *md;
void *p;
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
md = p;
if ((md->phys_addr <= phys_addr) && (phys_addr <
(md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
return md->type;
}
return 0;
}
u64 efi_mem_attributes(unsigned long phys_addr)
{
efi_memory_desc_t *md;
void *p;
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
md = p;
if ((md->phys_addr <= phys_addr) && (phys_addr <
(md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
return md->attribute;
}
return 0;
}

View File

@ -618,16 +618,9 @@ void __init setup_arch(char **cmdline_p)
pre_setup_arch_hook();
early_cpu_init();
/*
* FIXME: This isn't an official loader_type right
* now but does currently work with elilo.
* If we were configured as an EFI kernel, check to make
* sure that we were loaded correctly from elilo and that
* the system table is valid. If not, then initialize normally.
*/
#ifdef CONFIG_EFI
if ((boot_params.hdr.type_of_loader == 0x50) &&
boot_params.efi_info.efi_systab)
if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
"EL32", 4))
efi_enabled = 1;
#endif

View File

@ -2,6 +2,48 @@
#define _ASM_X86_EFI_H
#ifdef CONFIG_X86_32
extern unsigned long asmlinkage efi_call_phys(void *, ...);
#define efi_call_phys0(f) efi_call_phys(f)
#define efi_call_phys1(f, a1) efi_call_phys(f, a1)
#define efi_call_phys2(f, a1, a2) efi_call_phys(f, a1, a2)
#define efi_call_phys3(f, a1, a2, a3) efi_call_phys(f, a1, a2, a3)
#define efi_call_phys4(f, a1, a2, a3, a4) \
efi_call_phys(f, a1, a2, a3, a4)
#define efi_call_phys5(f, a1, a2, a3, a4, a5) \
efi_call_phys(f, a1, a2, a3, a4, a5)
#define efi_call_phys6(f, a1, a2, a3, a4, a5, a6) \
efi_call_phys(f, a1, a2, a3, a4, a5, a6)
/*
* Wrap all the virtual calls in a way that forces the parameters on the stack.
*/
#define efi_call_virt(f, args...) \
((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args)
#define efi_call_virt0(f) efi_call_virt(f)
#define efi_call_virt1(f, a1) efi_call_virt(f, a1)
#define efi_call_virt2(f, a1, a2) efi_call_virt(f, a1, a2)
#define efi_call_virt3(f, a1, a2, a3) efi_call_virt(f, a1, a2, a3)
#define efi_call_virt4(f, a1, a2, a3, a4) \
efi_call_virt(f, a1, a2, a3, a4)
#define efi_call_virt5(f, a1, a2, a3, a4, a5) \
efi_call_virt(f, a1, a2, a3, a4, a5)
#define efi_call_virt6(f, a1, a2, a3, a4, a5, a6) \
efi_call_virt(f, a1, a2, a3, a4, a5, a6)
/*
* We require an early boot_ioremap mapping mechanism initially
*/
extern void *boot_ioremap(unsigned long, unsigned long);
#define efi_early_ioremap(addr, size) boot_ioremap(addr, size)
#define efi_early_iounmap(vaddr, size)
#define efi_ioremap(addr, size) ioremap(addr, size)
#define end_pfn_map max_low_pfn
#else /* !CONFIG_X86_32 */
#define MAX_EFI_IO_PAGES 100