dect
/
linux-2.6
Archived
13
0
Fork 0

Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net:
  net: Compute protocol sequence numbers and fragment IDs using MD5.
  crypto: Move md5_transform to lib/md5.c
This commit is contained in:
Linus Torvalds 2011-08-06 22:12:37 -07:00
commit 7cd4767e69
18 changed files with 325 additions and 453 deletions

View File

@ -21,99 +21,9 @@
#include <linux/module.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/cryptohash.h>
#include <asm/byteorder.h>
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
#define MD5STEP(f, w, x, y, z, in, s) \
(w += f(x, y, z) + in, w = (w<<s | w>>(32-s)) + x)
static void md5_transform(u32 *hash, u32 const *in)
{
u32 a, b, c, d;
a = hash[0];
b = hash[1];
c = hash[2];
d = hash[3];
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
hash[0] += a;
hash[1] += b;
hash[2] += c;
hash[3] += d;
}
/* XXX: this stuff can be optimized */
static inline void le32_to_cpu_array(u32 *buf, unsigned int words)
{

View File

@ -1300,345 +1300,14 @@ ctl_table random_table[] = {
};
#endif /* CONFIG_SYSCTL */
/********************************************************************
*
* Random functions for networking
*
********************************************************************/
static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
/*
* TCP initial sequence number picking. This uses the random number
* generator to pick an initial secret value. This value is hashed
* along with the TCP endpoint information to provide a unique
* starting point for each pair of TCP endpoints. This defeats
* attacks which rely on guessing the initial TCP sequence number.
* This algorithm was suggested by Steve Bellovin.
*
* Using a very strong hash was taking an appreciable amount of the total
* TCP connection establishment time, so this is a weaker hash,
* compensated for by changing the secret periodically.
*/
/* F, G and H are basic MD4 functions: selection, majority, parity */
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
/*
* The generic round function. The application is so specific that
* we don't bother protecting all the arguments with parens, as is generally
* good macro practice, in favor of extra legibility.
* Rotation is separate from addition to prevent recomputation
*/
#define ROUND(f, a, b, c, d, x, s) \
(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
#define K1 0
#define K2 013240474631UL
#define K3 015666365641UL
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
static int __init random_int_secret_init(void)
{
__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
/* Round 1 */
ROUND(F, a, b, c, d, in[ 0] + K1, 3);
ROUND(F, d, a, b, c, in[ 1] + K1, 7);
ROUND(F, c, d, a, b, in[ 2] + K1, 11);
ROUND(F, b, c, d, a, in[ 3] + K1, 19);
ROUND(F, a, b, c, d, in[ 4] + K1, 3);
ROUND(F, d, a, b, c, in[ 5] + K1, 7);
ROUND(F, c, d, a, b, in[ 6] + K1, 11);
ROUND(F, b, c, d, a, in[ 7] + K1, 19);
ROUND(F, a, b, c, d, in[ 8] + K1, 3);
ROUND(F, d, a, b, c, in[ 9] + K1, 7);
ROUND(F, c, d, a, b, in[10] + K1, 11);
ROUND(F, b, c, d, a, in[11] + K1, 19);
/* Round 2 */
ROUND(G, a, b, c, d, in[ 1] + K2, 3);
ROUND(G, d, a, b, c, in[ 3] + K2, 5);
ROUND(G, c, d, a, b, in[ 5] + K2, 9);
ROUND(G, b, c, d, a, in[ 7] + K2, 13);
ROUND(G, a, b, c, d, in[ 9] + K2, 3);
ROUND(G, d, a, b, c, in[11] + K2, 5);
ROUND(G, c, d, a, b, in[ 0] + K2, 9);
ROUND(G, b, c, d, a, in[ 2] + K2, 13);
ROUND(G, a, b, c, d, in[ 4] + K2, 3);
ROUND(G, d, a, b, c, in[ 6] + K2, 5);
ROUND(G, c, d, a, b, in[ 8] + K2, 9);
ROUND(G, b, c, d, a, in[10] + K2, 13);
/* Round 3 */
ROUND(H, a, b, c, d, in[ 3] + K3, 3);
ROUND(H, d, a, b, c, in[ 7] + K3, 9);
ROUND(H, c, d, a, b, in[11] + K3, 11);
ROUND(H, b, c, d, a, in[ 2] + K3, 15);
ROUND(H, a, b, c, d, in[ 6] + K3, 3);
ROUND(H, d, a, b, c, in[10] + K3, 9);
ROUND(H, c, d, a, b, in[ 1] + K3, 11);
ROUND(H, b, c, d, a, in[ 5] + K3, 15);
ROUND(H, a, b, c, d, in[ 9] + K3, 3);
ROUND(H, d, a, b, c, in[ 0] + K3, 9);
ROUND(H, c, d, a, b, in[ 4] + K3, 11);
ROUND(H, b, c, d, a, in[ 8] + K3, 15);
return buf[1] + b; /* "most hashed" word */
/* Alternative: return sum of all words? */
}
#endif
#undef ROUND
#undef F
#undef G
#undef H
#undef K1
#undef K2
#undef K3
/* This should not be decreased so low that ISNs wrap too fast. */
#define REKEY_INTERVAL (300 * HZ)
/*
* Bit layout of the tcp sequence numbers (before adding current time):
* bit 24-31: increased after every key exchange
* bit 0-23: hash(source,dest)
*
* The implementation is similar to the algorithm described
* in the Appendix of RFC 1185, except that
* - it uses a 1 MHz clock instead of a 250 kHz clock
* - it performs a rekey every 5 minutes, which is equivalent
* to a (source,dest) tulple dependent forward jump of the
* clock by 0..2^(HASH_BITS+1)
*
* Thus the average ISN wraparound time is 68 minutes instead of
* 4.55 hours.
*
* SMP cleanup and lock avoidance with poor man's RCU.
* Manfred Spraul <manfred@colorfullife.com>
*
*/
#define COUNT_BITS 8
#define COUNT_MASK ((1 << COUNT_BITS) - 1)
#define HASH_BITS 24
#define HASH_MASK ((1 << HASH_BITS) - 1)
static struct keydata {
__u32 count; /* already shifted to the final position */
__u32 secret[12];
} ____cacheline_aligned ip_keydata[2];
static unsigned int ip_cnt;
static void rekey_seq_generator(struct work_struct *work);
static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
/*
* Lock avoidance:
* The ISN generation runs lockless - it's just a hash over random data.
* State changes happen every 5 minutes when the random key is replaced.
* Synchronization is performed by having two copies of the hash function
* state and rekey_seq_generator always updates the inactive copy.
* The copy is then activated by updating ip_cnt.
* The implementation breaks down if someone blocks the thread
* that processes SYN requests for more than 5 minutes. Should never
* happen, and even if that happens only a not perfectly compliant
* ISN is generated, nothing fatal.
*/
static void rekey_seq_generator(struct work_struct *work)
{
struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
smp_wmb();
ip_cnt++;
schedule_delayed_work(&rekey_work,
round_jiffies_relative(REKEY_INTERVAL));
}
static inline struct keydata *get_keyptr(void)
{
struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
smp_rmb();
return keyptr;
}
static __init int seqgen_init(void)
{
rekey_seq_generator(NULL);
get_random_bytes(random_int_secret, sizeof(random_int_secret));
return 0;
}
late_initcall(seqgen_init);
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
__be16 sport, __be16 dport)
{
__u32 seq;
__u32 hash[12];
struct keydata *keyptr = get_keyptr();
/* The procedure is the same as for IPv4, but addresses are longer.
* Thus we must use twothirdsMD4Transform.
*/
memcpy(hash, saddr, 16);
hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
seq += keyptr->count;
seq += ktime_to_ns(ktime_get_real());
return seq;
}
EXPORT_SYMBOL(secure_tcpv6_sequence_number);
#endif
/* The code below is shamelessly stolen from secure_tcp_sequence_number().
* All blames to Andrey V. Savochkin <saw@msu.ru>.
*/
__u32 secure_ip_id(__be32 daddr)
{
struct keydata *keyptr;
__u32 hash[4];
keyptr = get_keyptr();
/*
* Pick a unique starting offset for each IP destination.
* The dest ip address is placed in the starting vector,
* which is then hashed with random data.
*/
hash[0] = (__force __u32)daddr;
hash[1] = keyptr->secret[9];
hash[2] = keyptr->secret[10];
hash[3] = keyptr->secret[11];
return half_md4_transform(hash, keyptr->secret);
}
__u32 secure_ipv6_id(const __be32 daddr[4])
{
const struct keydata *keyptr;
__u32 hash[4];
keyptr = get_keyptr();
hash[0] = (__force __u32)daddr[0];
hash[1] = (__force __u32)daddr[1];
hash[2] = (__force __u32)daddr[2];
hash[3] = (__force __u32)daddr[3];
return half_md4_transform(hash, keyptr->secret);
}
#ifdef CONFIG_INET
__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
__be16 sport, __be16 dport)
{
__u32 seq;
__u32 hash[4];
struct keydata *keyptr = get_keyptr();
/*
* Pick a unique starting offset for each TCP connection endpoints
* (saddr, daddr, sport, dport).
* Note that the words are placed into the starting vector, which is
* then mixed with a partial MD4 over random data.
*/
hash[0] = (__force u32)saddr;
hash[1] = (__force u32)daddr;
hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
hash[3] = keyptr->secret[11];
seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
seq += keyptr->count;
/*
* As close as possible to RFC 793, which
* suggests using a 250 kHz clock.
* Further reading shows this assumes 2 Mb/s networks.
* For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
* For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
* we also need to limit the resolution so that the u32 seq
* overlaps less than one time per MSL (2 minutes).
* Choosing a clock of 64 ns period is OK. (period of 274 s)
*/
seq += ktime_to_ns(ktime_get_real()) >> 6;
return seq;
}
/* Generate secure starting point for ephemeral IPV4 transport port search */
u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
{
struct keydata *keyptr = get_keyptr();
u32 hash[4];
/*
* Pick a unique starting offset for each ephemeral port search
* (saddr, daddr, dport) and 48bits of random data.
*/
hash[0] = (__force u32)saddr;
hash[1] = (__force u32)daddr;
hash[2] = (__force u32)dport ^ keyptr->secret[10];
hash[3] = keyptr->secret[11];
return half_md4_transform(hash, keyptr->secret);
}
EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
__be16 dport)
{
struct keydata *keyptr = get_keyptr();
u32 hash[12];
memcpy(hash, saddr, 16);
hash[4] = (__force u32)dport;
memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
return twothirdsMD4Transform((const __u32 *)daddr, hash);
}
#endif
#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
/* Similar to secure_tcp_sequence_number but generate a 48 bit value
* bit's 32-47 increase every key exchange
* 0-31 hash(source, dest)
*/
u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
__be16 sport, __be16 dport)
{
u64 seq;
__u32 hash[4];
struct keydata *keyptr = get_keyptr();
hash[0] = (__force u32)saddr;
hash[1] = (__force u32)daddr;
hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
hash[3] = keyptr->secret[11];
seq = half_md4_transform(hash, keyptr->secret);
seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
seq += ktime_to_ns(ktime_get_real());
seq &= (1ull << 48) - 1;
return seq;
}
EXPORT_SYMBOL(secure_dccp_sequence_number);
#endif
#endif /* CONFIG_INET */
late_initcall(random_int_secret_init);
/*
* Get a random word for internal kernel use only. Similar to urandom but
@ -1646,17 +1315,15 @@ EXPORT_SYMBOL(secure_dccp_sequence_number);
* value is not cryptographically secure but for several uses the cost of
* depleting entropy is too high
*/
DEFINE_PER_CPU(__u32 [4], get_random_int_hash);
DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
unsigned int get_random_int(void)
{
struct keydata *keyptr;
__u32 *hash = get_cpu_var(get_random_int_hash);
int ret;
unsigned int ret;
keyptr = get_keyptr();
hash[0] += current->pid + jiffies + get_cycles();
ret = half_md4_transform(hash, keyptr->secret);
md5_transform(hash, random_int_secret);
ret = hash[0];
put_cpu_var(get_random_int_hash);
return ret;

View File

@ -8,6 +8,11 @@
void sha_init(__u32 *buf);
void sha_transform(__u32 *digest, const char *data, __u32 *W);
#define MD5_DIGEST_WORDS 4
#define MD5_MESSAGE_BYTES 64
void md5_transform(__u32 *hash, __u32 const *in);
__u32 half_md4_transform(__u32 buf[4], __u32 const in[8]);
#endif

View File

@ -57,18 +57,6 @@ extern void add_interrupt_randomness(int irq);
extern void get_random_bytes(void *buf, int nbytes);
void generate_random_uuid(unsigned char uuid_out[16]);
extern __u32 secure_ip_id(__be32 daddr);
extern __u32 secure_ipv6_id(const __be32 daddr[4]);
extern u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport);
extern u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
__be16 dport);
extern __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
__be16 sport, __be16 dport);
extern __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
__be16 sport, __be16 dport);
extern u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
__be16 sport, __be16 dport);
#ifndef MODULE
extern const struct file_operations random_fops, urandom_fops;
#endif

20
include/net/secure_seq.h Normal file
View File

@ -0,0 +1,20 @@
#ifndef _NET_SECURE_SEQ
#define _NET_SECURE_SEQ
#include <linux/types.h>
extern __u32 secure_ip_id(__be32 daddr);
extern __u32 secure_ipv6_id(const __be32 daddr[4]);
extern u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport);
extern u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
__be16 dport);
extern __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
__be16 sport, __be16 dport);
extern __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
__be16 sport, __be16 dport);
extern u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
__be16 sport, __be16 dport);
extern u64 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr,
__be16 sport, __be16 dport);
#endif /* _NET_SECURE_SEQ */

View File

@ -10,7 +10,7 @@ endif
lib-y := ctype.o string.o vsprintf.o cmdline.o \
rbtree.o radix-tree.o dump_stack.o timerqueue.o\
idr.o int_sqrt.o extable.o prio_tree.o \
sha1.o irq_regs.o reciprocal_div.o argv_split.o \
sha1.o md5.o irq_regs.o reciprocal_div.o argv_split.o \
proportions.o prio_heap.o ratelimit.o show_mem.o \
is_single_threaded.o plist.o decompress.o find_next_bit.o

95
lib/md5.c Normal file
View File

@ -0,0 +1,95 @@
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/cryptohash.h>
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
#define MD5STEP(f, w, x, y, z, in, s) \
(w += f(x, y, z) + in, w = (w<<s | w>>(32-s)) + x)
void md5_transform(__u32 *hash, __u32 const *in)
{
u32 a, b, c, d;
a = hash[0];
b = hash[1];
c = hash[2];
d = hash[3];
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
hash[0] += a;
hash[1] += b;
hash[2] += c;
hash[3] += d;
}
EXPORT_SYMBOL(md5_transform);

View File

@ -3,7 +3,7 @@
#
obj-y := sock.o request_sock.o skbuff.o iovec.o datagram.o stream.o scm.o \
gen_stats.o gen_estimator.o net_namespace.o
gen_stats.o gen_estimator.o net_namespace.o secure_seq.o
obj-$(CONFIG_SYSCTL) += sysctl_net_core.o

184
net/core/secure_seq.c Normal file
View File

@ -0,0 +1,184 @@
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/cryptohash.h>
#include <linux/module.h>
#include <linux/cache.h>
#include <linux/random.h>
#include <linux/hrtimer.h>
#include <linux/ktime.h>
#include <linux/string.h>
#include <net/secure_seq.h>
static u32 net_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
static int __init net_secret_init(void)
{
get_random_bytes(net_secret, sizeof(net_secret));
return 0;
}
late_initcall(net_secret_init);
static u32 seq_scale(u32 seq)
{
/*
* As close as possible to RFC 793, which
* suggests using a 250 kHz clock.
* Further reading shows this assumes 2 Mb/s networks.
* For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
* For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
* we also need to limit the resolution so that the u32 seq
* overlaps less than one time per MSL (2 minutes).
* Choosing a clock of 64 ns period is OK. (period of 274 s)
*/
return seq + (ktime_to_ns(ktime_get_real()) >> 6);
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
__be16 sport, __be16 dport)
{
u32 secret[MD5_MESSAGE_BYTES / 4];
u32 hash[MD5_DIGEST_WORDS];
u32 i;
memcpy(hash, saddr, 16);
for (i = 0; i < 4; i++)
secret[i] = net_secret[i] + daddr[i];
secret[4] = net_secret[4] +
(((__force u16)sport << 16) + (__force u16)dport);
for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++)
secret[i] = net_secret[i];
md5_transform(hash, secret);
return seq_scale(hash[0]);
}
EXPORT_SYMBOL(secure_tcpv6_sequence_number);
u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
__be16 dport)
{
u32 secret[MD5_MESSAGE_BYTES / 4];
u32 hash[MD5_DIGEST_WORDS];
u32 i;
memcpy(hash, saddr, 16);
for (i = 0; i < 4; i++)
secret[i] = net_secret[i] + (__force u32) daddr[i];
secret[4] = net_secret[4] + (__force u32)dport;
for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++)
secret[i] = net_secret[i];
md5_transform(hash, secret);
return hash[0];
}
#endif
#ifdef CONFIG_INET
__u32 secure_ip_id(__be32 daddr)
{
u32 hash[MD5_DIGEST_WORDS];
hash[0] = (__force __u32) daddr;
hash[1] = net_secret[13];
hash[2] = net_secret[14];
hash[3] = net_secret[15];
md5_transform(hash, net_secret);
return hash[0];
}
__u32 secure_ipv6_id(const __be32 daddr[4])
{
__u32 hash[4];
memcpy(hash, daddr, 16);
md5_transform(hash, net_secret);
return hash[0];
}
__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
__be16 sport, __be16 dport)
{
u32 hash[MD5_DIGEST_WORDS];
hash[0] = (__force u32)saddr;
hash[1] = (__force u32)daddr;
hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
hash[3] = net_secret[15];
md5_transform(hash, net_secret);
return seq_scale(hash[0]);
}
u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
{
u32 hash[MD5_DIGEST_WORDS];
hash[0] = (__force u32)saddr;
hash[1] = (__force u32)daddr;
hash[2] = (__force u32)dport ^ net_secret[14];
hash[3] = net_secret[15];
md5_transform(hash, net_secret);
return hash[0];
}
EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
#endif
#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
__be16 sport, __be16 dport)
{
u32 hash[MD5_DIGEST_WORDS];
u64 seq;
hash[0] = (__force u32)saddr;
hash[1] = (__force u32)daddr;
hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
hash[3] = net_secret[15];
md5_transform(hash, net_secret);
seq = hash[0] | (((u64)hash[1]) << 32);
seq += ktime_to_ns(ktime_get_real());
seq &= (1ull << 48) - 1;
return seq;
}
EXPORT_SYMBOL(secure_dccp_sequence_number);
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
u64 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr,
__be16 sport, __be16 dport)
{
u32 secret[MD5_MESSAGE_BYTES / 4];
u32 hash[MD5_DIGEST_WORDS];
u64 seq;
u32 i;
memcpy(hash, saddr, 16);
for (i = 0; i < 4; i++)
secret[i] = net_secret[i] + daddr[i];
secret[4] = net_secret[4] +
(((__force u16)sport << 16) + (__force u16)dport);
for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++)
secret[i] = net_secret[i];
md5_transform(hash, secret);
seq = hash[0] | (((u64)hash[1]) << 32);
seq += ktime_to_ns(ktime_get_real());
seq &= (1ull << 48) - 1;
return seq;
}
EXPORT_SYMBOL(secure_dccpv6_sequence_number);
#endif
#endif

View File

@ -26,6 +26,7 @@
#include <net/timewait_sock.h>
#include <net/tcp_states.h>
#include <net/xfrm.h>
#include <net/secure_seq.h>
#include "ackvec.h"
#include "ccid.h"

View File

@ -29,6 +29,7 @@
#include <net/transp_v6.h>
#include <net/ip6_checksum.h>
#include <net/xfrm.h>
#include <net/secure_seq.h>
#include "dccp.h"
#include "ipv6.h"
@ -69,13 +70,7 @@ static inline void dccp_v6_send_check(struct sock *sk, struct sk_buff *skb)
dh->dccph_checksum = dccp_v6_csum_finish(skb, &np->saddr, &np->daddr);
}
static inline __u32 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr,
__be16 sport, __be16 dport )
{
return secure_tcpv6_sequence_number(saddr, daddr, sport, dport);
}
static inline __u32 dccp_v6_init_sequence(struct sk_buff *skb)
static inline __u64 dccp_v6_init_sequence(struct sk_buff *skb)
{
return secure_dccpv6_sequence_number(ipv6_hdr(skb)->daddr.s6_addr32,
ipv6_hdr(skb)->saddr.s6_addr32,

View File

@ -21,6 +21,7 @@
#include <net/inet_connection_sock.h>
#include <net/inet_hashtables.h>
#include <net/secure_seq.h>
#include <net/ip.h>
/*

View File

@ -19,6 +19,7 @@
#include <linux/net.h>
#include <net/ip.h>
#include <net/inetpeer.h>
#include <net/secure_seq.h>
/*
* Theory of operations.

View File

@ -12,6 +12,7 @@
#include <linux/ip.h>
#include <linux/netfilter.h>
#include <net/secure_seq.h>
#include <net/netfilter/nf_nat.h>
#include <net/netfilter/nf_nat_core.h>
#include <net/netfilter/nf_nat_rule.h>

View File

@ -109,6 +109,7 @@
#include <linux/sysctl.h>
#endif
#include <net/atmclip.h>
#include <net/secure_seq.h>
#define RT_FL_TOS(oldflp4) \
((u32)(oldflp4->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))

View File

@ -72,6 +72,7 @@
#include <net/timewait_sock.h>
#include <net/xfrm.h>
#include <net/netdma.h>
#include <net/secure_seq.h>
#include <linux/inet.h>
#include <linux/ipv6.h>

View File

@ -20,6 +20,7 @@
#include <net/inet_connection_sock.h>
#include <net/inet_hashtables.h>
#include <net/inet6_hashtables.h>
#include <net/secure_seq.h>
#include <net/ip.h>
int __inet6_hash(struct sock *sk, struct inet_timewait_sock *tw)

View File

@ -61,6 +61,7 @@
#include <net/timewait_sock.h>
#include <net/netdma.h>
#include <net/inet_common.h>
#include <net/secure_seq.h>
#include <asm/uaccess.h>