dect
/
linux-2.6
Archived
13
0
Fork 0

arch/tile: common DMA code for the GXIO IORPC subsystem

The dma_queue support is used by both the mPipe (networking)
and Trio (PCI) hardware shims on tilegx.  This common code is
selected when either of those drivers is built.

Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
This commit is contained in:
Chris Metcalf 2012-04-04 16:58:27 -04:00
parent 44e5696710
commit 6369798037
4 changed files with 344 additions and 0 deletions

View File

@ -3,3 +3,9 @@
config TILE_GXIO
bool
depends on TILEGX
# Support direct access to the common I/O DMA facility within the
# TILE-Gx mPIPE and Trio hardware from kernel space.
config TILE_GXIO_DMA
bool
select TILE_GXIO

View File

@ -3,3 +3,4 @@
#
obj-$(CONFIG_TILE_GXIO) += iorpc_globals.o kiorpc.o
obj-$(CONFIG_TILE_GXIO_DMA) += dma_queue.o

176
arch/tile/gxio/dma_queue.c Normal file
View File

@ -0,0 +1,176 @@
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/io.h>
#include <linux/atomic.h>
#include <linux/module.h>
#include <gxio/dma_queue.h>
/* Wait for a memory read to complete. */
#define wait_for_value(val) \
__asm__ __volatile__("move %0, %0" :: "r"(val))
/* The index is in the low 16. */
#define DMA_QUEUE_INDEX_MASK ((1 << 16) - 1)
/*
* The hardware descriptor-ring type.
* This matches the types used by mpipe (MPIPE_EDMA_POST_REGION_VAL_t)
* and trio (TRIO_PUSH_DMA_REGION_VAL_t or TRIO_PULL_DMA_REGION_VAL_t).
* See those types for more documentation on the individual fields.
*/
typedef union {
struct {
#ifndef __BIG_ENDIAN__
uint64_t ring_idx:16;
uint64_t count:16;
uint64_t gen:1;
uint64_t __reserved:31;
#else
uint64_t __reserved:31;
uint64_t gen:1;
uint64_t count:16;
uint64_t ring_idx:16;
#endif
};
uint64_t word;
} __gxio_ring_t;
void __gxio_dma_queue_init(__gxio_dma_queue_t *dma_queue,
void *post_region_addr, unsigned int num_entries)
{
/*
* Limit 65536 entry rings to 65535 credits because we only have a
* 16 bit completion counter.
*/
int64_t credits = (num_entries < 65536) ? num_entries : 65535;
memset(dma_queue, 0, sizeof(*dma_queue));
dma_queue->post_region_addr = post_region_addr;
dma_queue->hw_complete_count = 0;
dma_queue->credits_and_next_index = credits << DMA_QUEUE_CREDIT_SHIFT;
}
EXPORT_SYMBOL_GPL(__gxio_dma_queue_init);
void __gxio_dma_queue_update_credits(__gxio_dma_queue_t *dma_queue)
{
__gxio_ring_t val;
uint64_t count;
uint64_t delta;
uint64_t new_count;
/*
* Read the 64-bit completion count without touching the cache, so
* we later avoid having to evict any sharers of this cache line
* when we update it below.
*/
uint64_t orig_hw_complete_count =
cmpxchg(&dma_queue->hw_complete_count,
-1, -1);
/* Make sure the load completes before we access the hardware. */
wait_for_value(orig_hw_complete_count);
/* Read the 16-bit count of how many packets it has completed. */
val.word = __gxio_mmio_read(dma_queue->post_region_addr);
count = val.count;
/*
* Calculate the number of completions since we last updated the
* 64-bit counter. It's safe to ignore the high bits because the
* maximum credit value is 65535.
*/
delta = (count - orig_hw_complete_count) & 0xffff;
if (delta == 0)
return;
/*
* Try to write back the count, advanced by delta. If we race with
* another thread, this might fail, in which case we return
* immediately on the assumption that some credits are (or at least
* were) available.
*/
new_count = orig_hw_complete_count + delta;
if (cmpxchg(&dma_queue->hw_complete_count,
orig_hw_complete_count,
new_count) != orig_hw_complete_count)
return;
/*
* We succeeded in advancing the completion count; add back the
* corresponding number of egress credits.
*/
__insn_fetchadd(&dma_queue->credits_and_next_index,
(delta << DMA_QUEUE_CREDIT_SHIFT));
}
EXPORT_SYMBOL_GPL(__gxio_dma_queue_update_credits);
/*
* A separate 'blocked' method for put() so that backtraces and
* profiles will clearly indicate that we're wasting time spinning on
* egress availability rather than actually posting commands.
*/
int64_t __gxio_dma_queue_wait_for_credits(__gxio_dma_queue_t *dma_queue,
int64_t modifier)
{
int backoff = 16;
int64_t old;
do {
int i;
/* Back off to avoid spamming memory networks. */
for (i = backoff; i > 0; i--)
__insn_mfspr(SPR_PASS);
/* Check credits again. */
__gxio_dma_queue_update_credits(dma_queue);
old = __insn_fetchaddgez(&dma_queue->credits_and_next_index,
modifier);
/* Calculate bounded exponential backoff for next iteration. */
if (backoff < 256)
backoff *= 2;
} while (old + modifier < 0);
return old;
}
EXPORT_SYMBOL_GPL(__gxio_dma_queue_wait_for_credits);
int64_t __gxio_dma_queue_reserve_aux(__gxio_dma_queue_t *dma_queue,
unsigned int num, int wait)
{
return __gxio_dma_queue_reserve(dma_queue, num, wait != 0, true);
}
EXPORT_SYMBOL_GPL(__gxio_dma_queue_reserve_aux);
int __gxio_dma_queue_is_complete(__gxio_dma_queue_t *dma_queue,
int64_t completion_slot, int update)
{
if (update) {
if (ACCESS_ONCE(dma_queue->hw_complete_count) >
completion_slot)
return 1;
__gxio_dma_queue_update_credits(dma_queue);
}
return ACCESS_ONCE(dma_queue->hw_complete_count) > completion_slot;
}
EXPORT_SYMBOL_GPL(__gxio_dma_queue_is_complete);

View File

@ -0,0 +1,161 @@
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#ifndef _GXIO_DMA_QUEUE_H_
#define _GXIO_DMA_QUEUE_H_
/*
* DMA queue management APIs shared between TRIO and mPIPE.
*/
#include "common.h"
/* The credit counter lives in the high 32 bits. */
#define DMA_QUEUE_CREDIT_SHIFT 32
/*
* State object that tracks a DMA queue's head and tail indices, as
* well as the number of commands posted and completed. The
* structure is accessed via a thread-safe, lock-free algorithm.
*/
typedef struct {
/*
* Address of a MPIPE_EDMA_POST_REGION_VAL_t,
* TRIO_PUSH_DMA_REGION_VAL_t, or TRIO_PULL_DMA_REGION_VAL_t
* register. These register have identical encodings and provide
* information about how many commands have been processed.
*/
void *post_region_addr;
/*
* A lazily-updated count of how many edescs the hardware has
* completed.
*/
uint64_t hw_complete_count __attribute__ ((aligned(64)));
/*
* High 32 bits are a count of available egress command credits,
* low 24 bits are the next egress "slot".
*/
int64_t credits_and_next_index;
} __gxio_dma_queue_t;
/* Initialize a dma queue. */
extern void __gxio_dma_queue_init(__gxio_dma_queue_t *dma_queue,
void *post_region_addr,
unsigned int num_entries);
/*
* Update the "credits_and_next_index" and "hw_complete_count" fields
* based on pending hardware completions. Note that some other thread
* may have already done this and, importantly, may still be in the
* process of updating "credits_and_next_index".
*/
extern void __gxio_dma_queue_update_credits(__gxio_dma_queue_t *dma_queue);
/* Wait for credits to become available. */
extern int64_t __gxio_dma_queue_wait_for_credits(__gxio_dma_queue_t *dma_queue,
int64_t modifier);
/* Reserve slots in the queue, optionally waiting for slots to become
* available, and optionally returning a "completion_slot" suitable for
* direct comparison to "hw_complete_count".
*/
static inline int64_t __gxio_dma_queue_reserve(__gxio_dma_queue_t *dma_queue,
unsigned int num, bool wait,
bool completion)
{
uint64_t slot;
/*
* Try to reserve 'num' egress command slots. We do this by
* constructing a constant that subtracts N credits and adds N to
* the index, and using fetchaddgez to only apply it if the credits
* count doesn't go negative.
*/
int64_t modifier = (((int64_t)(-num)) << DMA_QUEUE_CREDIT_SHIFT) | num;
int64_t old =
__insn_fetchaddgez(&dma_queue->credits_and_next_index,
modifier);
if (unlikely(old + modifier < 0)) {
/*
* We're out of credits. Try once to get more by checking for
* completed egress commands. If that fails, wait or fail.
*/
__gxio_dma_queue_update_credits(dma_queue);
old = __insn_fetchaddgez(&dma_queue->credits_and_next_index,
modifier);
if (old + modifier < 0) {
if (wait)
old = __gxio_dma_queue_wait_for_credits
(dma_queue, modifier);
else
return GXIO_ERR_DMA_CREDITS;
}
}
/* The bottom 24 bits of old encode the "slot". */
slot = (old & 0xffffff);
if (completion) {
/*
* A "completion_slot" is a "slot" which can be compared to
* "hw_complete_count" at any time in the future. To convert
* "slot" into a "completion_slot", we access "hw_complete_count"
* once (knowing that we have reserved a slot, and thus, it will
* be "basically" accurate), and combine its high 40 bits with
* the 24 bit "slot", and handle "wrapping" by adding "1 << 24"
* if the result is LESS than "hw_complete_count".
*/
uint64_t complete;
complete = ACCESS_ONCE(dma_queue->hw_complete_count);
slot |= (complete & 0xffffffffff000000);
if (slot < complete)
slot += 0x1000000;
}
/*
* If any of our slots mod 256 were equivalent to 0, go ahead and
* collect some egress credits, and update "hw_complete_count", and
* make sure the index doesn't overflow into the credits.
*/
if (unlikely(((old + num) & 0xff) < num)) {
__gxio_dma_queue_update_credits(dma_queue);
/* Make sure the index doesn't overflow into the credits. */
#ifdef __BIG_ENDIAN__
*(((uint8_t *)&dma_queue->credits_and_next_index) + 4) = 0;
#else
*(((uint8_t *)&dma_queue->credits_and_next_index) + 3) = 0;
#endif
}
return slot;
}
/* Non-inlinable "__gxio_dma_queue_reserve(..., true)". */
extern int64_t __gxio_dma_queue_reserve_aux(__gxio_dma_queue_t *dma_queue,
unsigned int num, int wait);
/* Check whether a particular "completion slot" has completed.
*
* Note that this function requires a "completion slot", and thus
* cannot be used with the result of any "reserve_fast" function.
*/
extern int __gxio_dma_queue_is_complete(__gxio_dma_queue_t *dma_queue,
int64_t completion_slot, int update);
#endif /* !_GXIO_DMA_QUEUE_H_ */