dect
/
asterisk
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
asterisk/main/stdtime/localtime.c

2355 lines
61 KiB
C

/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 1999 - 2010, Digium, Inc.
*
* Mark Spencer <markster@digium.com>
*
* Most of this code is in the public domain, so clarified as of
* June 5, 1996 by Arthur David Olson (arthur_david_olson@nih.gov).
*
* All modifications to this code to abstract timezones away from
* the environment are by Tilghman Lesher, <tlesher@vcch.com>, with
* the copyright assigned to Digium.
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
*
* Multi-timezone Localtime code
*
* The original source from this file may be obtained from ftp://elsie.nci.nih.gov/pub/
*/
/*
** This file is in the public domain, so clarified as of
** 1996-06-05 by Arthur David Olson.
*/
/*
** Leap second handling from Bradley White.
** POSIX-style TZ environment variable handling from Guy Harris.
*/
/* #define DEBUG */
/*LINTLIBRARY*/
#include "asterisk.h"
ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
#include <signal.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <float.h>
#include <stdlib.h>
#ifdef HAVE_INOTIFY
#include <sys/inotify.h>
#elif defined(HAVE_KQUEUE)
#include <sys/types.h>
#include <sys/time.h>
#include <sys/event.h>
#include <dirent.h>
#include <sys/stat.h>
#include <fcntl.h>
#endif
#include "private.h"
#include "tzfile.h"
#include "asterisk/lock.h"
#include "asterisk/localtime.h"
#include "asterisk/strings.h"
#include "asterisk/linkedlists.h"
#include "asterisk/utils.h"
#include "asterisk/test.h"
#ifndef lint
#ifndef NOID
static char __attribute__((unused)) elsieid[] = "@(#)localtime.c 8.5";
#endif /* !defined NOID */
#endif /* !defined lint */
#ifndef TZ_ABBR_MAX_LEN
#define TZ_ABBR_MAX_LEN 16
#endif /* !defined TZ_ABBR_MAX_LEN */
#ifndef TZ_ABBR_CHAR_SET
#define TZ_ABBR_CHAR_SET \
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
#endif /* !defined TZ_ABBR_CHAR_SET */
#ifndef TZ_ABBR_ERR_CHAR
#define TZ_ABBR_ERR_CHAR '_'
#endif /* !defined TZ_ABBR_ERR_CHAR */
/*
** SunOS 4.1.1 headers lack O_BINARY.
*/
#ifdef O_BINARY
#define OPEN_MODE (O_RDONLY | O_BINARY)
#endif /* defined O_BINARY */
#ifndef O_BINARY
#define OPEN_MODE O_RDONLY
#endif /* !defined O_BINARY */
static const char gmt[] = "GMT";
static const struct timeval WRONG = { 0, 0 };
#ifdef TEST_FRAMEWORK
/* Protected from multiple threads by the zonelist lock */
static struct ast_test *test = NULL;
#else
struct ast_test;
#endif
/*! \note
* The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
* We default to US rules as of 1999-08-17.
* POSIX 1003.1 section 8.1.1 says that the default DST rules are
* implementation dependent; for historical reasons, US rules are a
* common default.
*/
#ifndef TZDEFRULESTRING
#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
#endif /* !defined TZDEFDST */
/*!< \brief time type information */
struct ttinfo { /* time type information */
long tt_gmtoff; /* UTC offset in seconds */
int tt_isdst; /* used to set tm_isdst */
int tt_abbrind; /* abbreviation list index */
int tt_ttisstd; /* TRUE if transition is std time */
int tt_ttisgmt; /* TRUE if transition is UTC */
};
/*! \brief leap second information */
struct lsinfo { /* leap second information */
time_t ls_trans; /* transition time */
long ls_corr; /* correction to apply */
};
#define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
#ifdef TZNAME_MAX
#define MY_TZNAME_MAX TZNAME_MAX
#endif /* defined TZNAME_MAX */
#ifndef TZNAME_MAX
#define MY_TZNAME_MAX 255
#endif /* !defined TZNAME_MAX */
#ifndef TZ_STRLEN_MAX
#define TZ_STRLEN_MAX 255
#endif /* !defined TZ_STRLEN_MAX */
struct state {
/*! Name of the file that this references */
char name[TZ_STRLEN_MAX + 1];
int leapcnt;
int timecnt;
int typecnt;
int charcnt;
int goback;
int goahead;
time_t ats[TZ_MAX_TIMES];
unsigned char types[TZ_MAX_TIMES];
struct ttinfo ttis[TZ_MAX_TYPES];
char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
(2 * (MY_TZNAME_MAX + 1)))];
struct lsinfo lsis[TZ_MAX_LEAPS];
#ifdef HAVE_INOTIFY
int wd[2];
#elif defined(HAVE_KQUEUE)
int fd;
# ifdef HAVE_O_SYMLINK
int fds;
# else
DIR *dir;
# endif /* defined(HAVE_O_SYMLINK) */
#else
time_t mtime[2];
#endif
AST_LIST_ENTRY(state) list;
};
struct locale_entry {
AST_LIST_ENTRY(locale_entry) list;
locale_t locale;
char name[0];
};
struct rule {
int r_type; /* type of rule--see below */
int r_day; /* day number of rule */
int r_week; /* week number of rule */
int r_mon; /* month number of rule */
long r_time; /* transition time of rule */
};
#define JULIAN_DAY 0 /* Jn - Julian day */
#define DAY_OF_YEAR 1 /* n - day of year */
#define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
/*
** Prototypes for static functions.
*/
static long detzcode P((const char * codep));
static time_t detzcode64 P((const char * codep));
static int differ_by_repeat P((time_t t1, time_t t0));
static const char * getzname P((const char * strp));
static const char * getqzname P((const char * strp, const int delim));
static const char * getnum P((const char * strp, int * nump, int min,
int max));
static const char * getsecs P((const char * strp, long * secsp));
static const char * getoffset P((const char * strp, long * offsetp));
static const char * getrule P((const char * strp, struct rule * rulep));
static int gmtload P((struct state * sp));
static struct ast_tm * gmtsub P((const struct timeval * timep, long offset,
struct ast_tm * tmp));
static struct ast_tm * localsub P((const struct timeval * timep, long offset,
struct ast_tm * tmp, const struct state *sp));
static int increment_overflow P((int * number, int delta));
static int leaps_thru_end_of P((int y));
static int long_increment_overflow P((long * number, int delta));
static int long_normalize_overflow P((long * tensptr,
int * unitsptr, const int base));
static int normalize_overflow P((int * tensptr, int * unitsptr,
const int base));
static struct timeval time1 P((struct ast_tm * tmp,
struct ast_tm * (*funcp) P((const struct timeval *,
long, struct ast_tm *, const struct state *sp)),
long offset, const struct state *sp));
static struct timeval time2 P((struct ast_tm *tmp,
struct ast_tm * (*funcp) P((const struct timeval *,
long, struct ast_tm*, const struct state *sp)),
long offset, int * okayp, const struct state *sp));
static struct timeval time2sub P((struct ast_tm *tmp,
struct ast_tm * (*funcp) (const struct timeval *,
long, struct ast_tm*, const struct state *sp),
long offset, int * okayp, int do_norm_secs, const struct state *sp));
static struct ast_tm * timesub P((const struct timeval * timep, long offset,
const struct state * sp, struct ast_tm * tmp));
static int tmcomp P((const struct ast_tm * atmp,
const struct ast_tm * btmp));
static time_t transtime P((time_t janfirst, int year,
const struct rule * rulep, long offset));
static int tzload P((const char * name, struct state * sp,
int doextend));
static int tzparse P((const char * name, struct state * sp,
int lastditch));
static AST_LIST_HEAD_STATIC(zonelist, state);
#ifdef HAVE_NEWLOCALE
static AST_LIST_HEAD_STATIC(localelist, locale_entry);
#endif
#ifndef TZ_STRLEN_MAX
#define TZ_STRLEN_MAX 255
#endif /* !defined TZ_STRLEN_MAX */
static pthread_t inotify_thread = AST_PTHREADT_NULL;
static ast_cond_t initialization;
static ast_mutex_t initialization_lock;
#ifdef HAVE_INOTIFY
static int inotify_fd = -1;
static void *inotify_daemon(void *data)
{
struct {
struct inotify_event iev;
char name[FILENAME_MAX + 1];
} buf;
ssize_t res;
struct state *cur;
inotify_fd = inotify_init();
ast_mutex_lock(&initialization_lock);
ast_cond_broadcast(&initialization);
ast_mutex_unlock(&initialization_lock);
if (inotify_fd < 0) {
ast_log(LOG_ERROR, "Cannot initialize file notification service: %s (%d)\n", strerror(errno), errno);
inotify_thread = AST_PTHREADT_NULL;
return NULL;
}
for (;/*ever*/;) {
/* This read should block, most of the time. */
if ((res = read(inotify_fd, &buf, sizeof(buf))) < sizeof(buf.iev) && res > 0) {
/* This should never happen */
ast_log(LOG_ERROR, "Inotify read less than a full event (%zd < %zd)?!!\n", res, sizeof(buf.iev));
break;
} else if (res < 0) {
if (errno == EINTR || errno == EAGAIN) {
/* If read fails, try again */
AST_LIST_LOCK(&zonelist);
ast_cond_broadcast(&initialization);
AST_LIST_UNLOCK(&zonelist);
continue;
}
/* Sanity check -- this should never happen, either */
ast_log(LOG_ERROR, "Inotify failed: %s\n", strerror(errno));
break;
}
AST_LIST_LOCK(&zonelist);
AST_LIST_TRAVERSE_SAFE_BEGIN(&zonelist, cur, list) {
if (cur->wd[0] == buf.iev.wd || cur->wd[1] == buf.iev.wd) {
AST_LIST_REMOVE_CURRENT(list);
ast_free(cur);
break;
}
}
AST_LIST_TRAVERSE_SAFE_END
ast_cond_broadcast(&initialization);
AST_LIST_UNLOCK(&zonelist);
}
close(inotify_fd);
inotify_thread = AST_PTHREADT_NULL;
return NULL;
}
static void add_notify(struct state *sp, const char *path)
{
if (inotify_thread == AST_PTHREADT_NULL) {
ast_cond_init(&initialization, NULL);
ast_mutex_init(&initialization_lock);
ast_mutex_lock(&initialization_lock);
if (!(ast_pthread_create_background(&inotify_thread, NULL, inotify_daemon, NULL))) {
/* Give the thread a chance to initialize */
ast_cond_wait(&initialization, &initialization_lock);
} else {
fprintf(stderr, "Unable to start notification thread\n");
ast_mutex_unlock(&initialization_lock);
return;
}
ast_mutex_unlock(&initialization_lock);
}
if (inotify_fd > -1) {
char fullpath[FILENAME_MAX + 1] = "";
if (readlink(path, fullpath, sizeof(fullpath) - 1) != -1) {
/* If file the symlink points to changes */
sp->wd[1] = inotify_add_watch(inotify_fd, fullpath, IN_ATTRIB | IN_DELETE_SELF | IN_MODIFY | IN_MOVE_SELF | IN_CLOSE_WRITE );
} else {
sp->wd[1] = -1;
}
/* or if the symlink itself changes (or the real file is here, if path is not a symlink) */
sp->wd[0] = inotify_add_watch(inotify_fd, path, IN_ATTRIB | IN_DELETE_SELF | IN_MODIFY | IN_MOVE_SELF | IN_CLOSE_WRITE
#ifdef IN_DONT_FOLLOW /* Only defined in glibc 2.5 and above */
| IN_DONT_FOLLOW
#endif
);
}
}
#elif defined(HAVE_KQUEUE)
static int queue_fd = -1;
static void *kqueue_daemon(void *data)
{
struct kevent kev;
struct state *sp;
struct timespec no_wait = { 0, 1 };
ast_mutex_lock(&initialization_lock);
if ((queue_fd = kqueue()) < 0) {
/* ast_log uses us to format messages, so if we called ast_log, we'd be
* in for a nasty loop (seen already in testing) */
fprintf(stderr, "Unable to initialize kqueue(): %s\n", strerror(errno));
inotify_thread = AST_PTHREADT_NULL;
/* Okay to proceed */
ast_cond_signal(&initialization);
ast_mutex_unlock(&initialization_lock);
return NULL;
}
ast_cond_signal(&initialization);
ast_mutex_unlock(&initialization_lock);
for (;/*ever*/;) {
if (kevent(queue_fd, NULL, 0, &kev, 1, NULL) < 0) {
AST_LIST_LOCK(&zonelist);
ast_cond_broadcast(&initialization);
AST_LIST_UNLOCK(&zonelist);
continue;
}
sp = kev.udata;
/*!\note
* If the file event fired, then the file was removed, so we'll need
* to reparse the entry. The directory event is a bit more
* interesting. Unfortunately, the queue doesn't contain information
* about the file that changed (only the directory itself), so unless
* we kept a record of the directory state before, it's not really
* possible to know what change occurred. But if we act paranoid and
* just purge the associated file, then it will get reparsed, and
* everything works fine. It may be more work, but it's a vast
* improvement over the alternative implementation, which is to stat
* the file repeatedly in what is essentially a busy loop. */
AST_LIST_LOCK(&zonelist);
AST_LIST_REMOVE(&zonelist, sp, list);
AST_LIST_UNLOCK(&zonelist);
/* If the directory event fired, remove the file event */
EV_SET(&kev, sp->fd, EVFILT_VNODE, EV_DELETE, 0, 0, NULL);
kevent(queue_fd, &kev, 1, NULL, 0, &no_wait);
close(sp->fd);
#ifdef HAVE_O_SYMLINK
if (sp->fds > -1) {
/* If the file event fired, remove the symlink event */
EV_SET(&kev, sp->fds, EVFILT_VNODE, EV_DELETE, 0, 0, NULL);
kevent(queue_fd, &kev, 1, NULL, 0, &no_wait);
close(sp->fds);
}
#else
if (sp->dir) {
/* If the file event fired, remove the directory event */
EV_SET(&kev, dirfd(sp->dir), EVFILT_VNODE, EV_DELETE, 0, 0, NULL);
kevent(queue_fd, &kev, 1, NULL, 0, &no_wait);
closedir(sp->dir);
}
#endif
free(sp);
/* Just in case the signal was sent late */
AST_LIST_LOCK(&zonelist);
ast_cond_broadcast(&initialization);
AST_LIST_UNLOCK(&zonelist);
}
}
static void add_notify(struct state *sp, const char *path)
{
struct kevent kev;
struct timespec no_wait = { 0, 1 };
char watchdir[PATH_MAX + 1] = "";
if (inotify_thread == AST_PTHREADT_NULL) {
ast_cond_init(&initialization, NULL);
ast_mutex_init(&initialization_lock);
ast_mutex_lock(&initialization_lock);
if (!(ast_pthread_create_background(&inotify_thread, NULL, kqueue_daemon, NULL))) {
/* Give the thread a chance to initialize */
ast_cond_wait(&initialization, &initialization_lock);
}
ast_mutex_unlock(&initialization_lock);
}
if (queue_fd < 0) {
/* Error already sent */
return;
}
#ifdef HAVE_O_SYMLINK
if (readlink(path, watchdir, sizeof(watchdir) - 1) != -1 && (sp->fds = open(path, O_RDONLY | O_SYMLINK
# ifdef HAVE_O_EVTONLY
| O_EVTONLY
# endif
)) >= 0) {
EV_SET(&kev, sp->fds, EVFILT_VNODE, EV_ADD | EV_ENABLE | EV_ONESHOT, NOTE_WRITE | NOTE_EXTEND | NOTE_DELETE | NOTE_REVOKE | NOTE_ATTRIB, 0, sp);
if (kevent(queue_fd, &kev, 1, NULL, 0, &no_wait) < 0 && errno != 0) {
/* According to the API docs, we may get -1 return value, due to the
* NULL space for a returned event, but errno should be 0 unless
* there's a real error. Otherwise, kevent will return 0 to indicate
* that the time limit expired. */
fprintf(stderr, "Unable to watch '%s': %s\n", path, strerror(errno));
close(sp->fds);
sp->fds = -1;
}
}
#else
if (readlink(path, watchdir, sizeof(watchdir) - 1) != -1) {
/* Special -- watch the directory for changes, because we cannot directly watch a symlink */
char *slash;
ast_copy_string(watchdir, path, sizeof(watchdir));
if ((slash = strrchr(watchdir, '/'))) {
*slash = '\0';
}
if (!(sp->dir = opendir(watchdir))) {
fprintf(stderr, "Unable to watch directory with symlink '%s': %s\n", path, strerror(errno));
goto watch_file;
}
/*!\note
* You may be wondering about whether there is a potential conflict
* with the kqueue interface, because we might be watching the same
* directory for multiple zones. The answer is no, because kqueue
* looks at the descriptor to know if there's a duplicate. Since we
* (may) have opened the directory multiple times, each represents a
* different event, so no replacement of an existing event will occur.
* Likewise, there's no potential leak of a descriptor.
*/
EV_SET(&kev, dirfd(sp->dir), EVFILT_VNODE, EV_ADD | EV_ENABLE | EV_ONESHOT,
NOTE_DELETE | NOTE_WRITE | NOTE_EXTEND | NOTE_REVOKE | NOTE_ATTRIB, 0, sp);
if (kevent(queue_fd, &kev, 1, NULL, 0, &no_wait) < 0 && errno != 0) {
fprintf(stderr, "Unable to watch '%s': %s\n", watchdir, strerror(errno));
closedir(sp->dir);
sp->dir = NULL;
}
}
watch_file:
#endif
if ((sp->fd = open(path, O_RDONLY
# ifdef HAVE_O_EVTONLY
| O_EVTONLY
# endif
)) < 0) {
fprintf(stderr, "Unable to watch '%s' for changes: %s\n", path, strerror(errno));
return;
}
EV_SET(&kev, sp->fd, EVFILT_VNODE, EV_ADD | EV_ENABLE | EV_ONESHOT, NOTE_WRITE | NOTE_EXTEND | NOTE_DELETE | NOTE_REVOKE | NOTE_ATTRIB, 0, sp);
if (kevent(queue_fd, &kev, 1, NULL, 0, &no_wait) < 0 && errno != 0) {
/* According to the API docs, we may get -1 return value, due to the
* NULL space for a returned event, but errno should be 0 unless
* there's a real error. Otherwise, kevent will return 0 to indicate
* that the time limit expired. */
fprintf(stderr, "Unable to watch '%s': %s\n", path, strerror(errno));
close(sp->fd);
sp->fd = -1;
}
}
#else
static void *notify_daemon(void *data)
{
struct stat st, lst;
struct state *cur;
struct timespec sixty_seconds = { 60, 0 };
ast_mutex_lock(&initialization_lock);
ast_cond_broadcast(&initialization);
ast_mutex_unlock(&initialization_lock);
for (;/*ever*/;) {
char fullname[FILENAME_MAX + 1];
nanosleep(&sixty_seconds, NULL);
AST_LIST_LOCK(&zonelist);
AST_LIST_TRAVERSE_SAFE_BEGIN(&zonelist, cur, list) {
char *name = cur->name;
if (name[0] == ':')
++name;
if (name[0] != '/') {
(void) strcpy(fullname, TZDIR "/");
(void) strcat(fullname, name);
name = fullname;
}
stat(name, &st);
lstat(name, &lst);
if (st.st_mtime > cur->mtime[0] || lst.st_mtime > cur->mtime[1]) {
#ifdef TEST_FRAMEWORK
if (test) {
ast_test_status_update(test, "Removing cached TZ entry '%s' because underlying file changed. (%ld != %ld) or (%ld != %ld)\n", name, st.st_mtime, cur->mtime[0], lst.st_mtime, cur->mtime[1]);
} else
#endif
{
ast_log(LOG_NOTICE, "Removing cached TZ entry '%s' because underlying file changed.\n", name);
}
AST_LIST_REMOVE_CURRENT(list);
ast_free(cur);
continue;
}
}
AST_LIST_TRAVERSE_SAFE_END
ast_cond_broadcast(&initialization);
AST_LIST_UNLOCK(&zonelist);
}
inotify_thread = AST_PTHREADT_NULL;
return NULL;
}
static void add_notify(struct state *sp, const char *path)
{
struct stat st;
if (inotify_thread == AST_PTHREADT_NULL) {
ast_cond_init(&initialization, NULL);
ast_mutex_init(&initialization_lock);
ast_mutex_lock(&initialization_lock);
if (!(ast_pthread_create_background(&inotify_thread, NULL, notify_daemon, NULL))) {
/* Give the thread a chance to initialize */
ast_cond_wait(&initialization, &initialization_lock);
}
ast_mutex_unlock(&initialization_lock);
}
stat(path, &st);
sp->mtime[0] = st.st_mtime;
lstat(path, &st);
sp->mtime[1] = st.st_mtime;
}
#endif
void ast_localtime_wakeup_monitor(struct ast_test *info)
{
if (inotify_thread != AST_PTHREADT_NULL) {
AST_LIST_LOCK(&zonelist);
#ifdef TEST_FRAMEWORK
test = info;
#endif
pthread_kill(inotify_thread, SIGURG);
ast_cond_wait(&initialization, &(&zonelist)->lock);
#ifdef TEST_FRAMEWORK
test = NULL;
#endif
AST_LIST_UNLOCK(&zonelist);
}
}
/*! \note
** Section 4.12.3 of X3.159-1989 requires that
** Except for the strftime function, these functions [asctime,
** ctime, gmtime, localtime] return values in one of two static
** objects: a broken-down time structure and an array of char.
** Thanks to Paul Eggert for noting this.
*/
static long detzcode(const char * const codep)
{
long result;
int i;
result = (codep[0] & 0x80) ? ~0L : 0;
for (i = 0; i < 4; ++i)
result = (result << 8) | (codep[i] & 0xff);
return result;
}
static time_t detzcode64(const char * const codep)
{
time_t result;
int i;
result = (codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0;
for (i = 0; i < 8; ++i)
result = result * 256 + (codep[i] & 0xff);
return result;
}
static int differ_by_repeat(const time_t t1, const time_t t0)
{
const long long at1 = t1, at0 = t0;
if (TYPE_INTEGRAL(time_t) &&
TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
return 0;
return at1 - at0 == SECSPERREPEAT;
}
static int tzload(const char *name, struct state * const sp, const int doextend)
{
const char * p;
int i;
int fid;
int stored;
int nread;
union {
struct tzhead tzhead;
char buf[2 * sizeof(struct tzhead) +
2 * sizeof *sp +
4 * TZ_MAX_TIMES];
} u;
if (name == NULL && (name = TZDEFAULT) == NULL)
return -1;
{
int doaccess;
/*
** Section 4.9.1 of the C standard says that
** "FILENAME_MAX expands to an integral constant expression
** that is the size needed for an array of char large enough
** to hold the longest file name string that the implementation
** guarantees can be opened."
*/
char fullname[FILENAME_MAX + 1];
if (name[0] == ':')
++name;
doaccess = name[0] == '/';
if (!doaccess) {
if ((p = TZDIR) == NULL)
return -1;
if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
return -1;
(void) strcpy(fullname, p);
(void) strcat(fullname, "/");
(void) strcat(fullname, name);
/*
** Set doaccess if '.' (as in "../") shows up in name.
*/
if (strchr(name, '.') != NULL)
doaccess = TRUE;
name = fullname;
}
if (doaccess && access(name, R_OK) != 0)
return -1;
if ((fid = open(name, OPEN_MODE)) == -1)
return -1;
add_notify(sp, name);
}
nread = read(fid, u.buf, sizeof u.buf);
if (close(fid) < 0 || nread <= 0)
return -1;
for (stored = 4; stored <= 8; stored *= 2) {
int ttisstdcnt;
int ttisgmtcnt;
ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
return -1;
if (nread - (p - u.buf) <
sp->timecnt * stored + /* ats */
sp->timecnt + /* types */
sp->typecnt * 6 + /* ttinfos */
sp->charcnt + /* chars */
sp->leapcnt * (stored + 4) + /* lsinfos */
ttisstdcnt + /* ttisstds */
ttisgmtcnt) /* ttisgmts */
return -1;
for (i = 0; i < sp->timecnt; ++i) {
sp->ats[i] = (stored == 4) ?
detzcode(p) : detzcode64(p);
p += stored;
}
for (i = 0; i < sp->timecnt; ++i) {
sp->types[i] = (unsigned char) *p++;
if (sp->types[i] >= sp->typecnt)
return -1;
}
for (i = 0; i < sp->typecnt; ++i) {
struct ttinfo * ttisp;
ttisp = &sp->ttis[i];
ttisp->tt_gmtoff = detzcode(p);
p += 4;
ttisp->tt_isdst = (unsigned char) *p++;
if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
return -1;
ttisp->tt_abbrind = (unsigned char) *p++;
if (ttisp->tt_abbrind < 0 ||
ttisp->tt_abbrind > sp->charcnt)
return -1;
}
for (i = 0; i < sp->charcnt; ++i)
sp->chars[i] = *p++;
sp->chars[i] = '\0'; /* ensure '\0' at end */
for (i = 0; i < sp->leapcnt; ++i) {
struct lsinfo * lsisp;
lsisp = &sp->lsis[i];
lsisp->ls_trans = (stored == 4) ?
detzcode(p) : detzcode64(p);
p += stored;
lsisp->ls_corr = detzcode(p);
p += 4;
}
for (i = 0; i < sp->typecnt; ++i) {
struct ttinfo * ttisp;
ttisp = &sp->ttis[i];
if (ttisstdcnt == 0)
ttisp->tt_ttisstd = FALSE;
else {
ttisp->tt_ttisstd = *p++;
if (ttisp->tt_ttisstd != TRUE &&
ttisp->tt_ttisstd != FALSE)
return -1;
}
}
for (i = 0; i < sp->typecnt; ++i) {
struct ttinfo * ttisp;
ttisp = &sp->ttis[i];
if (ttisgmtcnt == 0)
ttisp->tt_ttisgmt = FALSE;
else {
ttisp->tt_ttisgmt = *p++;
if (ttisp->tt_ttisgmt != TRUE &&
ttisp->tt_ttisgmt != FALSE)
return -1;
}
}
/*
** Out-of-sort ats should mean we're running on a
** signed time_t system but using a data file with
** unsigned values (or vice versa).
*/
for (i = 0; i < sp->timecnt - 2; ++i)
if (sp->ats[i] > sp->ats[i + 1]) {
++i;
if (TYPE_SIGNED(time_t)) {
/*
** Ignore the end (easy).
*/
sp->timecnt = i;
} else {
/*
** Ignore the beginning (harder).
*/
int j;
for (j = 0; j + i < sp->timecnt; ++j) {
sp->ats[j] = sp->ats[j + i];
sp->types[j] = sp->types[j + i];
}
sp->timecnt = j;
}
break;
}
/*
** If this is an old file, we're done.
*/
if (u.tzhead.tzh_version[0] == '\0')
break;
nread -= p - u.buf;
for (i = 0; i < nread; ++i)
u.buf[i] = p[i];
/*
** If this is a narrow integer time_t system, we're done.
*/
if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
break;
}
if (doextend && nread > 2 &&
u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
sp->typecnt + 2 <= TZ_MAX_TYPES) {
struct state ts;
int result;
u.buf[nread - 1] = '\0';
result = tzparse(&u.buf[1], &ts, FALSE);
if (result == 0 && ts.typecnt == 2 &&
sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
for (i = 0; i < 2; ++i)
ts.ttis[i].tt_abbrind +=
sp->charcnt;
for (i = 0; i < ts.charcnt; ++i)
sp->chars[sp->charcnt++] =
ts.chars[i];
i = 0;
while (i < ts.timecnt &&
ts.ats[i] <=
sp->ats[sp->timecnt - 1])
++i;
while (i < ts.timecnt &&
sp->timecnt < TZ_MAX_TIMES) {
sp->ats[sp->timecnt] =
ts.ats[i];
sp->types[sp->timecnt] =
sp->typecnt +
ts.types[i];
++sp->timecnt;
++i;
}
sp->ttis[sp->typecnt++] = ts.ttis[0];
sp->ttis[sp->typecnt++] = ts.ttis[1];
}
}
i = 2 * YEARSPERREPEAT;
sp->goback = sp->goahead = sp->timecnt > i;
sp->goback = sp->goback && sp->types[i] == sp->types[0] &&
differ_by_repeat(sp->ats[i], sp->ats[0]);
sp->goahead = sp->goahead &&
sp->types[sp->timecnt - 1] == sp->types[sp->timecnt - 1 - i] &&
differ_by_repeat(sp->ats[sp->timecnt - 1],
sp->ats[sp->timecnt - 1 - i]);
return 0;
}
static const int mon_lengths[2][MONSPERYEAR] = {
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};
static const int year_lengths[2] = {
DAYSPERNYEAR, DAYSPERLYEAR
};
/*! \brief
** Given a pointer into a time zone string, scan until a character that is not
** a valid character in a zone name is found. Return a pointer to that
** character.
*/
static const char * getzname(const char *strp)
{
char c;
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
c != '+')
++strp;
return strp;
}
/*! \brief
** Given a pointer into an extended time zone string, scan until the ending
** delimiter of the zone name is located. Return a pointer to the delimiter.
**
** As with getzname above, the legal character set is actually quite
** restricted, with other characters producing undefined results.
** We don't do any checking here; checking is done later in common-case code.
*/
static const char * getqzname(const char *strp, const int delim)
{
int c;
while ((c = *strp) != '\0' && c != delim)
++strp;
return strp;
}
/*! \brief
** Given a pointer into a time zone string, extract a number from that string.
** Check that the number is within a specified range; if it is not, return
** NULL.
** Otherwise, return a pointer to the first character not part of the number.
*/
static const char *getnum(const char *strp, int *nump, const int min, const int max)
{
char c;
int num;
if (strp == NULL || !is_digit(c = *strp))
return NULL;
num = 0;
do {
num = num * 10 + (c - '0');
if (num > max)
return NULL; /* illegal value */
c = *++strp;
} while (is_digit(c));
if (num < min)
return NULL; /* illegal value */
*nump = num;
return strp;
}
/*! \brief
** Given a pointer into a time zone string, extract a number of seconds,
** in hh[:mm[:ss]] form, from the string.
** If any error occurs, return NULL.
** Otherwise, return a pointer to the first character not part of the number
** of seconds.
*/
static const char *getsecs(const char *strp, long * const secsp)
{
int num;
/*
** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
** "M10.4.6/26", which does not conform to Posix,
** but which specifies the equivalent of
** ``02:00 on the first Sunday on or after 23 Oct''.
*/
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
if (strp == NULL)
return NULL;
*secsp = num * (long) SECSPERHOUR;
if (*strp == ':') {
++strp;
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
if (strp == NULL)
return NULL;
*secsp += num * SECSPERMIN;
if (*strp == ':') {
++strp;
/* `SECSPERMIN' allows for leap seconds. */
strp = getnum(strp, &num, 0, SECSPERMIN);
if (strp == NULL)
return NULL;
*secsp += num;
}
}
return strp;
}
/*! \brief
** Given a pointer into a time zone string, extract an offset, in
** [+-]hh[:mm[:ss]] form, from the string.
** If any error occurs, return NULL.
** Otherwise, return a pointer to the first character not part of the time.
*/
static const char *getoffset(const char *strp, long *offsetp)
{
int neg = 0;
if (*strp == '-') {
neg = 1;
++strp;
} else if (*strp == '+')
++strp;
strp = getsecs(strp, offsetp);
if (strp == NULL)
return NULL; /* illegal time */
if (neg)
*offsetp = -*offsetp;
return strp;
}
/*! \brief
** Given a pointer into a time zone string, extract a rule in the form
** date[/time]. See POSIX section 8 for the format of "date" and "time".
** If a valid rule is not found, return NULL.
** Otherwise, return a pointer to the first character not part of the rule.
*/
static const char *getrule(const char *strp, struct rule *rulep)
{
if (*strp == 'J') {
/*
** Julian day.
*/
rulep->r_type = JULIAN_DAY;
++strp;
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
} else if (*strp == 'M') {
/*
** Month, week, day.
*/
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
++strp;
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_week, 1, 5);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
} else if (is_digit(*strp)) {
/*
** Day of year.
*/
rulep->r_type = DAY_OF_YEAR;
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
} else return NULL; /* invalid format */
if (strp == NULL)
return NULL;
if (*strp == '/') {
/*
** Time specified.
*/
++strp;
strp = getsecs(strp, &rulep->r_time);
} else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
return strp;
}
/*! \brief
** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
** year, a rule, and the offset from UTC at the time that rule takes effect,
** calculate the Epoch-relative time that rule takes effect.
*/
static time_t transtime(const time_t janfirst, const int year, const struct rule *rulep, const long offset)
{
int leapyear;
time_t value;
int i;
int d, m1, yy0, yy1, yy2, dow;
INITIALIZE(value);
leapyear = isleap(year);
switch (rulep->r_type) {
case JULIAN_DAY:
/*
** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
** years.
** In non-leap years, or if the day number is 59 or less, just
** add SECSPERDAY times the day number-1 to the time of
** January 1, midnight, to get the day.
*/
value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
if (leapyear && rulep->r_day >= 60)
value += SECSPERDAY;
break;
case DAY_OF_YEAR:
/*
** n - day of year.
** Just add SECSPERDAY times the day number to the time of
** January 1, midnight, to get the day.
*/
value = janfirst + rulep->r_day * SECSPERDAY;
break;
case MONTH_NTH_DAY_OF_WEEK:
/*
** Mm.n.d - nth "dth day" of month m.
*/
value = janfirst;
for (i = 0; i < rulep->r_mon - 1; ++i)
value += mon_lengths[leapyear][i] * SECSPERDAY;
/*
** Use Zeller's Congruence to get day-of-week of first day of
** month.
*/
m1 = (rulep->r_mon + 9) % 12 + 1;
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
yy1 = yy0 / 100;
yy2 = yy0 % 100;
dow = ((26 * m1 - 2) / 10 +
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
if (dow < 0)
dow += DAYSPERWEEK;
/*
** "dow" is the day-of-week of the first day of the month. Get
** the day-of-month (zero-origin) of the first "dow" day of the
** month.
*/
d = rulep->r_day - dow;
if (d < 0)
d += DAYSPERWEEK;
for (i = 1; i < rulep->r_week; ++i) {
if (d + DAYSPERWEEK >=
mon_lengths[leapyear][rulep->r_mon - 1])
break;
d += DAYSPERWEEK;
}
/*
** "d" is the day-of-month (zero-origin) of the day we want.
*/
value += d * SECSPERDAY;
break;
}
/*
** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
** question. To get the Epoch-relative time of the specified local
** time on that day, add the transition time and the current offset
** from UTC.
*/
return value + rulep->r_time + offset;
}
/*! \note
** Given a POSIX section 8-style TZ string, fill in the rule tables as
** appropriate.
*/
static int tzparse(const char *name, struct state *sp, const int lastditch)
{
const char * stdname;
const char * dstname;
size_t stdlen;
size_t dstlen;
long stdoffset;
long dstoffset;
time_t * atp;
unsigned char * typep;
char * cp;
int load_result;
INITIALIZE(dstname);
stdname = name;
if (lastditch) {
stdlen = strlen(name); /* length of standard zone name */
name += stdlen;
if (stdlen >= sizeof sp->chars)
stdlen = (sizeof sp->chars) - 1;
stdoffset = 0;
} else {
if (*name == '<') {
name++;
stdname = name;
name = getqzname(name, '>');
if (*name != '>')
return -1;
stdlen = name - stdname;
name++;
} else {
name = getzname(name);
stdlen = name - stdname;
}
if (*name == '\0')
return -1;
name = getoffset(name, &stdoffset);
if (name == NULL)
return -1;
}
load_result = tzload(TZDEFRULES, sp, FALSE);
if (load_result != 0)
sp->leapcnt = 0; /* so, we're off a little */
if (*name != '\0') {
if (*name == '<') {
dstname = ++name;
name = getqzname(name, '>');
if (*name != '>')
return -1;
dstlen = name - dstname;
name++;
} else {
dstname = name;
name = getzname(name);
dstlen = name - dstname; /* length of DST zone name */
}
if (*name != '\0' && *name != ',' && *name != ';') {
name = getoffset(name, &dstoffset);
if (name == NULL)
return -1;
} else dstoffset = stdoffset - SECSPERHOUR;
if (*name == '\0' && load_result != 0)
name = TZDEFRULESTRING;
if (*name == ',' || *name == ';') {
struct rule start;
struct rule end;
int year;
time_t janfirst;
time_t starttime;
time_t endtime;
++name;
if ((name = getrule(name, &start)) == NULL)
return -1;
if (*name++ != ',')
return -1;
if ((name = getrule(name, &end)) == NULL)
return -1;
if (*name != '\0')
return -1;
sp->typecnt = 2; /* standard time and DST */
/*
** Two transitions per year, from EPOCH_YEAR forward.
*/
sp->ttis[0].tt_gmtoff = -dstoffset;
sp->ttis[0].tt_isdst = 1;
sp->ttis[0].tt_abbrind = stdlen + 1;
sp->ttis[1].tt_gmtoff = -stdoffset;
sp->ttis[1].tt_isdst = 0;
sp->ttis[1].tt_abbrind = 0;
atp = sp->ats;
typep = sp->types;
janfirst = 0;
sp->timecnt = 0;
for (year = EPOCH_YEAR;
sp->timecnt + 2 <= TZ_MAX_TIMES;
++year) {
time_t newfirst;
starttime = transtime(janfirst, year, &start,
stdoffset);
endtime = transtime(janfirst, year, &end,
dstoffset);
if (starttime > endtime) {
*atp++ = endtime;
*typep++ = 1; /* DST ends */
*atp++ = starttime;
*typep++ = 0; /* DST begins */
} else {
*atp++ = starttime;
*typep++ = 0; /* DST begins */
*atp++ = endtime;
*typep++ = 1; /* DST ends */
}
sp->timecnt += 2;
newfirst = janfirst;
newfirst += year_lengths[isleap(year)] *
SECSPERDAY;
if (newfirst <= janfirst)
break;
janfirst = newfirst;
}
} else {
long theirstdoffset;
long theirdstoffset;
long theiroffset;
int isdst;
int i;
int j;
if (*name != '\0')
return -1;
/*
** Initial values of theirstdoffset and theirdstoffset.
*/
theirstdoffset = 0;
for (i = 0; i < sp->timecnt; ++i) {
j = sp->types[i];
if (!sp->ttis[j].tt_isdst) {
theirstdoffset =
-sp->ttis[j].tt_gmtoff;
break;
}
}
theirdstoffset = 0;
for (i = 0; i < sp->timecnt; ++i) {
j = sp->types[i];
if (sp->ttis[j].tt_isdst) {
theirdstoffset =
-sp->ttis[j].tt_gmtoff;
break;
}
}
/*
** Initially we're assumed to be in standard time.
*/
isdst = FALSE;
theiroffset = theirstdoffset;
/*
** Now juggle transition times and types
** tracking offsets as you do.
*/
for (i = 0; i < sp->timecnt; ++i) {
j = sp->types[i];
sp->types[i] = sp->ttis[j].tt_isdst;
if (sp->ttis[j].tt_ttisgmt) {
/* No adjustment to transition time */
} else {
/*
** If summer time is in effect, and the
** transition time was not specified as
** standard time, add the summer time
** offset to the transition time;
** otherwise, add the standard time
** offset to the transition time.
*/
/*
** Transitions from DST to DDST
** will effectively disappear since
** POSIX provides for only one DST
** offset.
*/
if (isdst && !sp->ttis[j].tt_ttisstd) {
sp->ats[i] += dstoffset -
theirdstoffset;
} else {
sp->ats[i] += stdoffset -
theirstdoffset;
}
}
theiroffset = -sp->ttis[j].tt_gmtoff;
if (sp->ttis[j].tt_isdst)
theirdstoffset = theiroffset;
else theirstdoffset = theiroffset;
}
/*
** Finally, fill in ttis.
** ttisstd and ttisgmt need not be handled.
*/
sp->ttis[0].tt_gmtoff = -stdoffset;
sp->ttis[0].tt_isdst = FALSE;
sp->ttis[0].tt_abbrind = 0;
sp->ttis[1].tt_gmtoff = -dstoffset;
sp->ttis[1].tt_isdst = TRUE;
sp->ttis[1].tt_abbrind = stdlen + 1;
sp->typecnt = 2;
}
} else {
dstlen = 0;
sp->typecnt = 1; /* only standard time */
sp->timecnt = 0;
sp->ttis[0].tt_gmtoff = -stdoffset;
sp->ttis[0].tt_isdst = 0;
sp->ttis[0].tt_abbrind = 0;
}
sp->charcnt = stdlen + 1;
if (dstlen != 0)
sp->charcnt += dstlen + 1;
if ((size_t) sp->charcnt > sizeof sp->chars)
return -1;
cp = sp->chars;
(void) strncpy(cp, stdname, stdlen);
cp += stdlen;
*cp++ = '\0';
if (dstlen != 0) {
(void) strncpy(cp, dstname, dstlen);
*(cp + dstlen) = '\0';
}
return 0;
}
static int gmtload(struct state *sp)
{
if (tzload(gmt, sp, TRUE) != 0)
return tzparse(gmt, sp, TRUE);
else
return -1;
}
static const struct state *ast_tzset(const char *zone)
{
struct state *sp;
if (ast_strlen_zero(zone)) {
#ifdef SOLARIS
zone = getenv("TZ");
if (ast_strlen_zero(zone)) {
zone = "GMT";
}
#else
zone = "/etc/localtime";
#endif
}
AST_LIST_LOCK(&zonelist);
AST_LIST_TRAVERSE(&zonelist, sp, list) {
if (!strcmp(sp->name, zone)) {
AST_LIST_UNLOCK(&zonelist);
return sp;
}
}
AST_LIST_UNLOCK(&zonelist);
if (!(sp = ast_calloc(1, sizeof *sp)))
return NULL;
if (tzload(zone, sp, TRUE) != 0) {
if (zone[0] == ':' || tzparse(zone, sp, FALSE) != 0)
(void) gmtload(sp);
}
ast_copy_string(sp->name, zone, sizeof(sp->name));
AST_LIST_LOCK(&zonelist);
AST_LIST_INSERT_TAIL(&zonelist, sp, list);
AST_LIST_UNLOCK(&zonelist);
return sp;
}
/*! \note
** The easy way to behave "as if no library function calls" localtime
** is to not call it--so we drop its guts into "localsub", which can be
** freely called. (And no, the PANS doesn't require the above behavior--
** but it *is* desirable.)
**
** The unused offset argument is for the benefit of mktime variants.
*/
static struct ast_tm *localsub(const struct timeval *timep, const long offset, struct ast_tm *tmp, const struct state *sp)
{
const struct ttinfo * ttisp;
int i;
struct ast_tm * result;
struct timeval t;
memcpy(&t, timep, sizeof(t));
if (sp == NULL)
return gmtsub(timep, offset, tmp);
if ((sp->goback && t.tv_sec < sp->ats[0]) ||
(sp->goahead && t.tv_sec > sp->ats[sp->timecnt - 1])) {
struct timeval newt = t;
time_t seconds;
time_t tcycles;
int_fast64_t icycles;
if (t.tv_sec < sp->ats[0])
seconds = sp->ats[0] - t.tv_sec;
else seconds = t.tv_sec - sp->ats[sp->timecnt - 1];
--seconds;
tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
++tcycles;
icycles = tcycles;
if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
return NULL;
seconds = icycles;
seconds *= YEARSPERREPEAT;
seconds *= AVGSECSPERYEAR;
if (t.tv_sec < sp->ats[0])
newt.tv_sec += seconds;
else newt.tv_sec -= seconds;
if (newt.tv_sec < sp->ats[0] ||
newt.tv_sec > sp->ats[sp->timecnt - 1])
return NULL; /* "cannot happen" */
result = localsub(&newt, offset, tmp, sp);
if (result == tmp) {
time_t newy;
newy = tmp->tm_year;
if (t.tv_sec < sp->ats[0])
newy -= icycles * YEARSPERREPEAT;
else
newy += icycles * YEARSPERREPEAT;
tmp->tm_year = newy;
if (tmp->tm_year != newy)
return NULL;
}
return result;
}
if (sp->timecnt == 0 || t.tv_sec < sp->ats[0]) {
i = 0;
while (sp->ttis[i].tt_isdst) {
if (++i >= sp->typecnt) {
i = 0;
break;
}
}
} else {
int lo = 1;
int hi = sp->timecnt;
while (lo < hi) {
int mid = (lo + hi) >> 1;
if (t.tv_sec < sp->ats[mid])
hi = mid;
else
lo = mid + 1;
}
i = (int) sp->types[lo - 1];
}
ttisp = &sp->ttis[i];
/*
** To get (wrong) behavior that's compatible with System V Release 2.0
** you'd replace the statement below with
** t += ttisp->tt_gmtoff;
** timesub(&t, 0L, sp, tmp);
*/
result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
tmp->tm_isdst = ttisp->tt_isdst;
#ifndef SOLARIS /* Solaris doesn't have this element */
tmp->tm_gmtoff = ttisp->tt_gmtoff;
#endif
#ifdef TM_ZONE
tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
#endif /* defined TM_ZONE */
tmp->tm_usec = timep->tv_usec;
return result;
}
struct ast_tm *ast_localtime(const struct timeval *timep, struct ast_tm *tmp, const char *zone)
{
const struct state *sp = ast_tzset(zone);
memset(tmp, 0, sizeof(*tmp));
return sp ? localsub(timep, 0L, tmp, sp) : NULL;
}
/*
** This function provides informaton about daylight savings time
** for the given timezone. This includes whether it can determine
** if daylight savings is used for this timezone, the UTC times for
** when daylight savings transitions, and the offset in seconds from
** UTC.
*/
void ast_get_dst_info(const time_t * const timep, int *dst_enabled, time_t *dst_start, time_t *dst_end, int *gmt_off, const char * const zone)
{
int i;
int transition1 = -1;
int transition2 = -1;
time_t seconds;
int bounds_exceeded = 0;
time_t t = *timep;
const struct state *sp;
if (NULL == dst_enabled)
return;
*dst_enabled = 0;
if (NULL == dst_start || NULL == dst_end || NULL == gmt_off)
return;
*gmt_off = 0;
sp = ast_tzset(zone);
if (NULL == sp)
return;
/* If the desired time exceeds the bounds of the defined time transitions
* then give give up on determining DST info and simply look for gmt offset
* This requires that I adjust the given time using increments of Gregorian
* repeats to place the time within the defined time transitions in the
* timezone structure.
*/
if ((sp->goback && t < sp->ats[0]) ||
(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
time_t tcycles;
int_fast64_t icycles;
if (t < sp->ats[0])
seconds = sp->ats[0] - t;
else seconds = t - sp->ats[sp->timecnt - 1];
--seconds;
tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
++tcycles;
icycles = tcycles;
if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
return;
seconds = icycles;
seconds *= YEARSPERREPEAT;
seconds *= AVGSECSPERYEAR;
if (t < sp->ats[0])
t += seconds;
else
t -= seconds;
if (t < sp->ats[0] || t > sp->ats[sp->timecnt - 1])
return; /* "cannot happen" */
bounds_exceeded = 1;
}
if (sp->timecnt == 0 || t < sp->ats[0]) {
/* I have no transition times or I'm before time */
*dst_enabled = 0;
/* Find where I can get gmtoff */
i = 0;
while (sp->ttis[i].tt_isdst)
if (++i >= sp->typecnt) {
i = 0;
break;
}
*gmt_off = sp->ttis[i].tt_gmtoff;
return;
}
for (i = 1; i < sp->timecnt; ++i) {
if (t < sp->ats[i]) {
transition1 = sp->types[i - 1];
transition2 = sp->types[i];
break;
}
}
/* if I found transition times that do not bounded the given time and these correspond to
or the bounding zones do not reflect a changes in day light savings, then I do not have dst active */
if (i >= sp->timecnt || 0 > transition1 || 0 > transition2 ||
(sp->ttis[transition1].tt_isdst == sp->ttis[transition2].tt_isdst)) {
*dst_enabled = 0;
*gmt_off = sp->ttis[sp->types[sp->timecnt -1]].tt_gmtoff;
} else {
/* I have valid daylight savings information. */
if(sp->ttis[transition2].tt_isdst)
*gmt_off = sp->ttis[transition1].tt_gmtoff;
else
*gmt_off = sp->ttis[transition2].tt_gmtoff;
/* If I adjusted the time earlier, indicate that the dst is invalid */
if (!bounds_exceeded) {
*dst_enabled = 1;
/* Determine which of the bounds is the start of daylight savings and which is the end */
if(sp->ttis[transition2].tt_isdst) {
*dst_start = sp->ats[i];
*dst_end = sp->ats[i -1];
} else {
*dst_start = sp->ats[i -1];
*dst_end = sp->ats[i];
}
}
}
return;
}
/*
** gmtsub is to gmtime as localsub is to localtime.
*/
static struct ast_tm *gmtsub(const struct timeval *timep, const long offset, struct ast_tm *tmp)
{
struct ast_tm * result;
struct state *sp;
AST_LIST_LOCK(&zonelist);
AST_LIST_TRAVERSE(&zonelist, sp, list) {
if (!strcmp(sp->name, "UTC"))
break;
}
if (!sp) {
if (!(sp = (struct state *) ast_calloc(1, sizeof *sp)))
return NULL;
gmtload(sp);
AST_LIST_INSERT_TAIL(&zonelist, sp, list);
}
AST_LIST_UNLOCK(&zonelist);
result = timesub(timep, offset, sp, tmp);
#ifdef TM_ZONE
/*
** Could get fancy here and deliver something such as
** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
** but this is no time for a treasure hunt.
*/
if (offset != 0)
tmp->TM_ZONE = " ";
else
tmp->TM_ZONE = sp->chars;
#endif /* defined TM_ZONE */
return result;
}
/*! \brief
** Return the number of leap years through the end of the given year
** where, to make the math easy, the answer for year zero is defined as zero.
*/
static int leaps_thru_end_of(const int y)
{
return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
-(leaps_thru_end_of(-(y + 1)) + 1);
}
static struct ast_tm *timesub(const struct timeval *timep, const long offset, const struct state *sp, struct ast_tm *tmp)
{
const struct lsinfo * lp;
time_t tdays;
int idays; /* unsigned would be so 2003 */
long rem;
int y;
const int * ip;
long corr;
int hit;
int i;
long seconds;
corr = 0;
hit = 0;
i = (sp == NULL) ? 0 : sp->leapcnt;
while (--i >= 0) {
lp = &sp->lsis[i];
if (timep->tv_sec >= lp->ls_trans) {
if (timep->tv_sec == lp->ls_trans) {
hit = ((i == 0 && lp->ls_corr > 0) ||
lp->ls_corr > sp->lsis[i - 1].ls_corr);
if (hit)
while (i > 0 &&
sp->lsis[i].ls_trans ==
sp->lsis[i - 1].ls_trans + 1 &&
sp->lsis[i].ls_corr ==
sp->lsis[i - 1].ls_corr + 1) {
++hit;
--i;
}
}
corr = lp->ls_corr;
break;
}
}
y = EPOCH_YEAR;
tdays = timep->tv_sec / SECSPERDAY;
rem = timep->tv_sec - tdays * SECSPERDAY;
while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
int newy;
time_t tdelta;
int idelta;
int leapdays;
tdelta = tdays / DAYSPERLYEAR;
idelta = tdelta;
if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
return NULL;
if (idelta == 0)
idelta = (tdays < 0) ? -1 : 1;
newy = y;
if (increment_overflow(&newy, idelta))
return NULL;
leapdays = leaps_thru_end_of(newy - 1) -
leaps_thru_end_of(y - 1);
tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
tdays -= leapdays;
y = newy;
}
seconds = tdays * SECSPERDAY + 0.5;
tdays = seconds / SECSPERDAY;
rem += seconds - tdays * SECSPERDAY;
/*
** Given the range, we can now fearlessly cast...
*/
idays = tdays;
rem += offset - corr;
while (rem < 0) {
rem += SECSPERDAY;
--idays;
}
while (rem >= SECSPERDAY) {
rem -= SECSPERDAY;
++idays;
}
while (idays < 0) {
if (increment_overflow(&y, -1))
return NULL;
idays += year_lengths[isleap(y)];
}
while (idays >= year_lengths[isleap(y)]) {
idays -= year_lengths[isleap(y)];
if (increment_overflow(&y, 1))
return NULL;
}
tmp->tm_year = y;
if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
return NULL;
tmp->tm_yday = idays;
/*
** The "extra" mods below avoid overflow problems.
*/
tmp->tm_wday = EPOCH_WDAY +
((y - EPOCH_YEAR) % DAYSPERWEEK) *
(DAYSPERNYEAR % DAYSPERWEEK) +
leaps_thru_end_of(y - 1) -
leaps_thru_end_of(EPOCH_YEAR - 1) +
idays;
tmp->tm_wday %= DAYSPERWEEK;
if (tmp->tm_wday < 0)
tmp->tm_wday += DAYSPERWEEK;
tmp->tm_hour = (int) (rem / SECSPERHOUR);
rem %= SECSPERHOUR;
tmp->tm_min = (int) (rem / SECSPERMIN);
/*
** A positive leap second requires a special
** representation. This uses "... ??:59:60" et seq.
*/
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
ip = mon_lengths[isleap(y)];
for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
idays -= ip[tmp->tm_mon];
tmp->tm_mday = (int) (idays + 1);
tmp->tm_isdst = 0;
#ifdef TM_GMTOFF
tmp->TM_GMTOFF = offset;
#endif /* defined TM_GMTOFF */
tmp->tm_usec = timep->tv_usec;
return tmp;
}
/*! \note
** Adapted from code provided by Robert Elz, who writes:
** The "best" way to do mktime I think is based on an idea of Bob
** Kridle's (so its said...) from a long time ago.
** It does a binary search of the time_t space. Since time_t's are
** just 32 bits, its a max of 32 iterations (even at 64 bits it
** would still be very reasonable).
*/
/*! \brief
** Simplified normalize logic courtesy Paul Eggert.
*/
static int increment_overflow(int *number, int delta)
{
int number0;
number0 = *number;
*number += delta;
return (*number < number0) != (delta < 0);
}
static int long_increment_overflow(long *number, int delta)
{
long number0;
number0 = *number;
*number += delta;
return (*number < number0) != (delta < 0);
}
static int normalize_overflow(int *tensptr, int *unitsptr, const int base)
{
int tensdelta;
tensdelta = (*unitsptr >= 0) ?
(*unitsptr / base) :
(-1 - (-1 - *unitsptr) / base);
*unitsptr -= tensdelta * base;
return increment_overflow(tensptr, tensdelta);
}
static int long_normalize_overflow(long *tensptr, int *unitsptr, const int base)
{
int tensdelta;
tensdelta = (*unitsptr >= 0) ?
(*unitsptr / base) :
(-1 - (-1 - *unitsptr) / base);
*unitsptr -= tensdelta * base;
return long_increment_overflow(tensptr, tensdelta);
}
static int tmcomp(const struct ast_tm *atmp, const struct ast_tm *btmp)
{
int result;
if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
(result = (atmp->tm_min - btmp->tm_min)) == 0 &&
(result = (atmp->tm_sec - btmp->tm_sec)) == 0)
result = atmp->tm_usec - btmp->tm_usec;
return result;
}
static struct timeval time2sub(struct ast_tm *tmp, struct ast_tm * (* const funcp) (const struct timeval *, long, struct ast_tm *, const struct state *), const long offset, int *okayp, const int do_norm_secs, const struct state *sp)
{
int dir;
int i, j;
int saved_seconds;
long li;
time_t lo;
time_t hi;
long y;
struct timeval newt = { 0, 0 };
struct timeval t = { 0, 0 };
struct ast_tm yourtm, mytm;
*okayp = FALSE;
yourtm = *tmp;
if (do_norm_secs) {
if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
SECSPERMIN))
return WRONG;
}
if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
return WRONG;
if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
return WRONG;
y = yourtm.tm_year;
if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
return WRONG;
/*
** Turn y into an actual year number for now.
** It is converted back to an offset from TM_YEAR_BASE later.
*/
if (long_increment_overflow(&y, TM_YEAR_BASE))
return WRONG;
while (yourtm.tm_mday <= 0) {
if (long_increment_overflow(&y, -1))
return WRONG;
li = y + (1 < yourtm.tm_mon);
yourtm.tm_mday += year_lengths[isleap(li)];
}
while (yourtm.tm_mday > DAYSPERLYEAR) {
li = y + (1 < yourtm.tm_mon);
yourtm.tm_mday -= year_lengths[isleap(li)];
if (long_increment_overflow(&y, 1))
return WRONG;
}
for ( ; ; ) {
i = mon_lengths[isleap(y)][yourtm.tm_mon];
if (yourtm.tm_mday <= i)
break;
yourtm.tm_mday -= i;
if (++yourtm.tm_mon >= MONSPERYEAR) {
yourtm.tm_mon = 0;
if (long_increment_overflow(&y, 1))
return WRONG;
}
}
if (long_increment_overflow(&y, -TM_YEAR_BASE))
return WRONG;
yourtm.tm_year = y;
if (yourtm.tm_year != y)
return WRONG;
if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
saved_seconds = 0;
else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
/*
** We can't set tm_sec to 0, because that might push the
** time below the minimum representable time.
** Set tm_sec to 59 instead.
** This assumes that the minimum representable time is
** not in the same minute that a leap second was deleted from,
** which is a safer assumption than using 58 would be.
*/
if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
return WRONG;
saved_seconds = yourtm.tm_sec;
yourtm.tm_sec = SECSPERMIN - 1;
} else {
saved_seconds = yourtm.tm_sec;
yourtm.tm_sec = 0;
}
/*
** Do a binary search (this works whatever time_t's type is).
*/
if (!TYPE_SIGNED(time_t)) {
lo = 0;
hi = lo - 1;
} else if (!TYPE_INTEGRAL(time_t)) {
if (sizeof(time_t) > sizeof(float))
hi = (time_t) DBL_MAX;
else hi = (time_t) FLT_MAX;
lo = -hi;
} else {
lo = 1;
for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
lo *= 2;
hi = -(lo + 1);
}
for ( ; ; ) {
t.tv_sec = lo / 2 + hi / 2;
if (t.tv_sec < lo)
t.tv_sec = lo;
else if (t.tv_sec > hi)
t.tv_sec = hi;
if ((*funcp)(&t, offset, &mytm, sp) == NULL) {
/*
** Assume that t is too extreme to be represented in
** a struct ast_tm; arrange things so that it is less
** extreme on the next pass.
*/
dir = (t.tv_sec > 0) ? 1 : -1;
} else dir = tmcomp(&mytm, &yourtm);
if (dir != 0) {
if (t.tv_sec == lo) {
++t.tv_sec;
if (t.tv_sec <= lo)
return WRONG;
++lo;
} else if (t.tv_sec == hi) {
--t.tv_sec;
if (t.tv_sec >= hi)
return WRONG;
--hi;
}
if (lo > hi)
return WRONG;
if (dir > 0)
hi = t.tv_sec;
else lo = t.tv_sec;
continue;
}
if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
break;
/*
** Right time, wrong type.
** Hunt for right time, right type.
** It's okay to guess wrong since the guess
** gets checked.
*/
/*
** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
*/
for (i = sp->typecnt - 1; i >= 0; --i) {
if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
continue;
for (j = sp->typecnt - 1; j >= 0; --j) {
if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
continue;
newt.tv_sec = t.tv_sec + sp->ttis[j].tt_gmtoff -
sp->ttis[i].tt_gmtoff;
if ((*funcp)(&newt, offset, &mytm, sp) == NULL)
continue;
if (tmcomp(&mytm, &yourtm) != 0)
continue;
if (mytm.tm_isdst != yourtm.tm_isdst)
continue;
/*
** We have a match.
*/
t = newt;
goto label;
}
}
return WRONG;
}
label:
newt.tv_sec = t.tv_sec + saved_seconds;
if ((newt.tv_sec < t.tv_sec) != (saved_seconds < 0))
return WRONG;
t.tv_sec = newt.tv_sec;
if ((*funcp)(&t, offset, tmp, sp))
*okayp = TRUE;
return t;
}
static struct timeval time2(struct ast_tm *tmp, struct ast_tm * (* const funcp) (const struct timeval *, long, struct ast_tm*, const struct state *sp), const long offset, int *okayp, const struct state *sp)
{
struct timeval t;
/*! \note
** First try without normalization of seconds
** (in case tm_sec contains a value associated with a leap second).
** If that fails, try with normalization of seconds.
*/
t = time2sub(tmp, funcp, offset, okayp, FALSE, sp);
return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE, sp);
}
static struct timeval time1(struct ast_tm *tmp, struct ast_tm * (* const funcp) (const struct timeval *, long, struct ast_tm *, const struct state *), const long offset, const struct state *sp)
{
struct timeval t;
int samei, otheri;
int sameind, otherind;
int i;
int nseen;
int seen[TZ_MAX_TYPES];
int types[TZ_MAX_TYPES];
int okay;
if (tmp->tm_isdst > 1)
tmp->tm_isdst = 1;
t = time2(tmp, funcp, offset, &okay, sp);
#ifdef PCTS
/*
** PCTS code courtesy Grant Sullivan.
*/
if (okay)
return t;
if (tmp->tm_isdst < 0)
tmp->tm_isdst = 0; /* reset to std and try again */
#endif /* defined PCTS */
#ifndef PCTS
if (okay || tmp->tm_isdst < 0)
return t;
#endif /* !defined PCTS */
/*
** We're supposed to assume that somebody took a time of one type
** and did some math on it that yielded a "struct ast_tm" that's bad.
** We try to divine the type they started from and adjust to the
** type they need.
*/
if (sp == NULL)
return WRONG;
for (i = 0; i < sp->typecnt; ++i)
seen[i] = FALSE;
nseen = 0;
for (i = sp->timecnt - 1; i >= 0; --i)
if (!seen[sp->types[i]]) {
seen[sp->types[i]] = TRUE;
types[nseen++] = sp->types[i];
}
for (sameind = 0; sameind < nseen; ++sameind) {
samei = types[sameind];
if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
continue;
for (otherind = 0; otherind < nseen; ++otherind) {
otheri = types[otherind];
if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
continue;
tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
sp->ttis[samei].tt_gmtoff;
tmp->tm_isdst = !tmp->tm_isdst;
t = time2(tmp, funcp, offset, &okay, sp);
if (okay)
return t;
tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
sp->ttis[samei].tt_gmtoff;
tmp->tm_isdst = !tmp->tm_isdst;
}
}
return WRONG;
}
struct timeval ast_mktime(struct ast_tm *tmp, const char *zone)
{
const struct state *sp;
if (!(sp = ast_tzset(zone)))
return WRONG;
return time1(tmp, localsub, 0L, sp);
}
#ifdef HAVE_NEWLOCALE
static struct locale_entry *find_by_locale(locale_t locale)
{
struct locale_entry *cur;
AST_LIST_TRAVERSE(&localelist, cur, list) {
if (locale == cur->locale) {
return cur;
}
}
return NULL;
}
static struct locale_entry *find_by_name(const char *name)
{
struct locale_entry *cur;
AST_LIST_TRAVERSE(&localelist, cur, list) {
if (strcmp(name, cur->name) == 0) {
return cur;
}
}
return NULL;
}
static const char *store_by_locale(locale_t prevlocale)
{
struct locale_entry *cur;
if (prevlocale == LC_GLOBAL_LOCALE) {
return NULL;
} else {
/* Get a handle for this entry, if any */
if ((cur = find_by_locale(prevlocale))) {
return cur->name;
} else {
/* Create an entry, so it can be restored later */
int x;
cur = NULL;
AST_LIST_LOCK(&localelist);
for (x = 0; x < 10000; x++) {
char name[5];
snprintf(name, sizeof(name), "%04d", x);
if (!find_by_name(name)) {
if ((cur = ast_calloc(1, sizeof(*cur) + strlen(name) + 1))) {
cur->locale = prevlocale;
strcpy(cur->name, name); /* SAFE */
AST_LIST_INSERT_TAIL(&localelist, cur, list);
}
break;
}
}
AST_LIST_UNLOCK(&localelist);
return cur ? cur->name : NULL;
}
}
}
const char *ast_setlocale(const char *locale)
{
struct locale_entry *cur;
locale_t prevlocale = LC_GLOBAL_LOCALE;
if (locale == NULL) {
return store_by_locale(uselocale(LC_GLOBAL_LOCALE));
}
AST_LIST_LOCK(&localelist);
if ((cur = find_by_name(locale))) {
prevlocale = uselocale(cur->locale);
}
if (!cur) {
if ((cur = ast_calloc(1, sizeof(*cur) + strlen(locale) + 1))) {
cur->locale = newlocale(LC_ALL_MASK, locale, NULL);
strcpy(cur->name, locale); /* SAFE */
AST_LIST_INSERT_TAIL(&localelist, cur, list);
prevlocale = uselocale(cur->locale);
}
}
AST_LIST_UNLOCK(&localelist);
return store_by_locale(prevlocale);
}
#else
const char *ast_setlocale(const char *unused)
{
return NULL;
}
#endif
int ast_strftime_locale(char *buf, size_t len, const char *tmp, const struct ast_tm *tm, const char *locale)
{
size_t fmtlen = strlen(tmp) + 1;
char *format = ast_calloc(1, fmtlen), *fptr = format, *newfmt;
int decimals = -1, i, res;
long fraction;
const char *prevlocale;
if (!format) {
return -1;
}
for (; *tmp; tmp++) {
if (*tmp == '%') {
switch (tmp[1]) {
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
if (tmp[2] != 'q') {
goto defcase;
}
decimals = tmp[1] - '0';
tmp++;
/* Fall through */
case 'q': /* Milliseconds */
if (decimals == -1) {
decimals = 3;
}
/* Juggle some memory to fit the item */
newfmt = ast_realloc(format, fmtlen + decimals);
if (!newfmt) {
ast_free(format);
return -1;
}
fptr = fptr - format + newfmt;
format = newfmt;
fmtlen += decimals;
/* Reduce the fraction of time to the accuracy needed */
for (i = 6, fraction = tm->tm_usec; i > decimals; i--) {
fraction /= 10;
}
fptr += sprintf(fptr, "%0*ld", decimals, fraction);
/* Reset, in case more than one 'q' specifier exists */
decimals = -1;
tmp++;
break;
default:
goto defcase;
}
} else {
defcase: *fptr++ = *tmp;
}
}
*fptr = '\0';
#undef strftime
if (locale) {
prevlocale = ast_setlocale(locale);
}
res = (int)strftime(buf, len, format, (struct tm *)tm);
if (locale) {
ast_setlocale(prevlocale);
}
ast_free(format);
return res;
}
int ast_strftime(char *buf, size_t len, const char *tmp, const struct ast_tm *tm)
{
return ast_strftime_locale(buf, len, tmp, tm, NULL);
}
char *ast_strptime_locale(const char *s, const char *format, struct ast_tm *tm, const char *locale)
{
struct tm tm2 = { 0, };
char *res;
const char *prevlocale;
prevlocale = ast_setlocale(locale);
res = strptime(s, format, &tm2);
ast_setlocale(prevlocale);
memcpy(tm, &tm2, sizeof(*tm));
tm->tm_usec = 0;
/* strptime(3) doesn't set .tm_isdst correctly, so to force ast_mktime(3)
* to deal with it correctly, we set it to -1. */
tm->tm_isdst = -1;
return res;
}
char *ast_strptime(const char *s, const char *format, struct ast_tm *tm)
{
return ast_strptime_locale(s, format, tm, NULL);
}