dect
/
asterisk
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
asterisk/main/ccss.c

4511 lines
148 KiB
C

/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 1999 - 2010, Digium, Inc.
*
* Mark Michelson <mmichelson@digium.com>
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
* \brief Call Completion Supplementary Services implementation
* \author Mark Michelson <mmichelson@digium.com>
*/
#include "asterisk.h"
ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
#include "asterisk/astobj2.h"
#include "asterisk/strings.h"
#include "asterisk/ccss.h"
#include "asterisk/channel.h"
#include "asterisk/pbx.h"
#include "asterisk/utils.h"
#include "asterisk/taskprocessor.h"
#include "asterisk/event.h"
#include "asterisk/devicestate.h"
#include "asterisk/module.h"
#include "asterisk/app.h"
#include "asterisk/cli.h"
#include "asterisk/manager.h"
#include "asterisk/causes.h"
/*** DOCUMENTATION
<application name="CallCompletionRequest" language="en_US">
<synopsis>
Request call completion service for previous call
</synopsis>
<syntax />
<description>
<para>Request call completion service for a previously failed
call attempt.</para>
<para>This application sets the following channel variables:</para>
<variablelist>
<variable name="CC_REQUEST_RESULT">
<para>This is the returned status of the request.</para>
<value name="SUCCESS" />
<value name="FAIL" />
</variable>
<variable name="CC_REQUEST_REASON">
<para>This is the reason the request failed.</para>
<value name="NO_CORE_INSTANCE" />
<value name="NOT_GENERIC" />
<value name="TOO_MANY_REQUESTS" />
<value name="UNSPECIFIED" />
</variable>
</variablelist>
</description>
</application>
<application name="CallCompletionCancel" language="en_US">
<synopsis>
Cancel call completion service
</synopsis>
<syntax />
<description>
<para>Cancel a Call Completion Request.</para>
<para>This application sets the following channel variables:</para>
<variablelist>
<variable name="CC_CANCEL_RESULT">
<para>This is the returned status of the cancel.</para>
<value name="SUCCESS" />
<value name="FAIL" />
</variable>
<variable name="CC_CANCEL_REASON">
<para>This is the reason the cancel failed.</para>
<value name="NO_CORE_INSTANCE" />
<value name="NOT_GENERIC" />
<value name="UNSPECIFIED" />
</variable>
</variablelist>
</description>
</application>
***/
/* These are some file-scoped variables. It would be
* nice to define them closer to their first usage, but since
* they are used in many places throughout the file, defining
* them here at the top is easiest.
*/
/*!
* The ast_sched_context used for all generic CC timeouts
*/
static struct ast_sched_context *cc_sched_context;
/*!
* Counter used to create core IDs for CC calls. Each new
* core ID is created by atomically adding 1 to the core_id_counter
*/
static int core_id_counter;
/*!
* Taskprocessor from which all CC agent and monitor callbacks
* are called.
*/
static struct ast_taskprocessor *cc_core_taskprocessor;
/*!
* Name printed on all CC log messages.
*/
static const char *CC_LOGGER_LEVEL_NAME = "CC";
/*!
* Logger level registered by the CC core.
*/
static int cc_logger_level;
/*!
* Parsed configuration value for cc_max_requests
*/
static unsigned int global_cc_max_requests;
/*!
* The current number of CC requests in the system
*/
static int cc_request_count;
static inline void *cc_ref(void *obj, const char *debug)
{
ao2_t_ref(obj, +1, debug);
return obj;
}
static inline void *cc_unref(void *obj, const char *debug)
{
ao2_t_ref(obj, -1, debug);
return NULL;
}
/*!
* \since 1.8
* \internal
* \brief A structure for holding the configuration parameters
* relating to CCSS
*/
struct ast_cc_config_params {
enum ast_cc_agent_policies cc_agent_policy;
enum ast_cc_monitor_policies cc_monitor_policy;
unsigned int cc_offer_timer;
unsigned int ccnr_available_timer;
unsigned int ccbs_available_timer;
unsigned int cc_recall_timer;
unsigned int cc_max_agents;
unsigned int cc_max_monitors;
char cc_callback_macro[AST_MAX_EXTENSION];
char cc_agent_dialstring[AST_MAX_EXTENSION];
};
/*!
* \since 1.8
* \brief The states used in the CCSS core state machine
*
* For more information, see doc/CCSS_architecture.pdf
*/
enum cc_state {
/*! Entered when it is determined that CCSS may be used for the call */
CC_AVAILABLE,
/*! Entered when a CCSS agent has offered CCSS to a caller */
CC_CALLER_OFFERED,
/*! Entered when a CCSS agent confirms that a caller has
* requested CCSS */
CC_CALLER_REQUESTED,
/*! Entered when a CCSS monitor confirms acknowledgment of an
* outbound CCSS request */
CC_ACTIVE,
/*! Entered when a CCSS monitor alerts the core that the called party
* has become available */
CC_CALLEE_READY,
/*! Entered when a CCSS agent alerts the core that the calling party
* may not be recalled because he is unavailable
*/
CC_CALLER_BUSY,
/*! Entered when a CCSS agent alerts the core that the calling party
* is attempting to recall the called party
*/
CC_RECALLING,
/*! Entered when an application alerts the core that the calling party's
* recall attempt has had a call progress response indicated
*/
CC_COMPLETE,
/*! Entered any time that something goes wrong during the process, thus
* resulting in the failure of the attempted CCSS transaction. Note also
* that cancellations of CC are treated as failures.
*/
CC_FAILED,
};
/*!
* \brief The payload for an AST_CONTROL_CC frame
*
* \details
* This contains all the necessary data regarding
* a called device so that the CC core will be able
* to allocate the proper monitoring resources.
*/
struct cc_control_payload {
/*!
* \brief The type of monitor to allocate.
*
* \details
* The type of monitor to allocate. This is a string which corresponds
* to a set of monitor callbacks registered. Examples include "generic"
* and "SIP"
*
* \note This really should be an array of characters in case this payload
* is sent accross an IAX2 link. However, this would not make too much sense
* given this type may not be recognized by the other end.
* Protection may be necessary to prevent it from being transmitted.
*
* In addition the following other problems are also possible:
* 1) Endian issues with the integers/enums stored in the config_params.
* 2) Alignment padding issues for the element types.
*/
const char *monitor_type;
/*!
* \brief Private data allocated by the callee
*
* \details
* All channel drivers that monitor endpoints will need to allocate
* data that is not usable by the CC core. In most cases, some or all
* of this data is allocated at the time that the channel driver offers
* CC to the caller. There are many opportunities for failures to occur
* between when a channel driver offers CC and when a monitor is actually
* allocated to watch the endpoint. For this reason, the channel driver
* must give the core a pointer to the private data that was allocated so
* that the core can call back into the channel driver to destroy it if
* a failure occurs. If no private data has been allocated at the time that
* CC is offered, then it is perfectly acceptable to pass NULL for this
* field.
*/
void *private_data;
/*!
* \brief Service offered by the endpoint
*
* \details
* This indicates the type of call completion service offered by the
* endpoint. This data is not crucial to the machinations of the CC core,
* but it is helpful for debugging purposes.
*/
enum ast_cc_service_type service;
/*!
* \brief Configuration parameters used by this endpoint
*
* \details
* Each time an endpoint offers call completion, it must provide its call
* completion configuration parameters. This is because settings may be different
* depending on the circumstances.
*/
struct ast_cc_config_params config_params;
/*!
* \brief ID of parent extension
*
* \details
* This is the only datum that the CC core derives on its own and is not
* provided by the offerer of CC. This provides the core with information on
* which extension monitor is the most immediate parent of this device.
*/
int parent_interface_id;
/*!
* \brief Name of device to be monitored
*
* \details
* The device name by which this monitored endpoint will be referred in the
* CC core. It is highly recommended that this device name is derived by using
* the function ast_channel_get_device_name.
*/
char device_name[AST_CHANNEL_NAME];
/*!
* \brief Recall dialstring
*
* \details
* Certain channel drivers (DAHDI in particular) will require that a special
* dialstring be used to indicate that the outgoing call is to interpreted as
* a CC recall. If the channel driver has such a requirement, then this is
* where that special recall dialstring is placed. If no special dialstring
* is to be used, then the channel driver must provide the original dialstring
* used to call this endpoint.
*/
char dialstring[AST_CHANNEL_NAME];
};
/*!
* \brief The "tree" of interfaces that is dialed.
*
* \details
* Though this is a linked list, it is logically treated
* as a tree of monitors. Each monitor has an id and a parent_id
* associated with it. The id is a unique ID for that monitor, and
* the parent_id is the unique ID of the monitor's parent in the
* tree. The tree is structured such that all of a parent's children
* will appear after the parent in the tree. However, it cannot be
* guaranteed exactly where after the parent the children are.
*
* The tree is reference counted since several threads may need
* to use it, and it may last beyond the lifetime of a single
* thread.
*/
AST_LIST_HEAD(cc_monitor_tree, ast_cc_monitor);
static const int CC_CORE_INSTANCES_BUCKETS = 17;
static struct ao2_container *cc_core_instances;
struct cc_core_instance {
/*!
* Unique identifier for this instance of the CC core.
*/
int core_id;
/*!
* The current state for this instance of the CC core.
*/
enum cc_state current_state;
/*!
* The CC agent in use for this call
*/
struct ast_cc_agent *agent;
/*!
* Reference to the monitor tree formed during the initial call
*/
struct cc_monitor_tree *monitors;
};
/*!
* \internal
* \brief Request that the core change states
* \param state The state to which we wish to change
* \param core_id The unique identifier for this instance of the CCSS core state machine
* \param debug Optional message explaining the reason for the state change
* \param ap varargs list
* \retval 0 State change successfully queued
* \retval -1 Unable to queue state change request
*/
static int __attribute__((format(printf, 3, 0))) cc_request_state_change(enum cc_state state, const int core_id, const char *debug, va_list ap);
/*!
* \internal
* \brief create a new instance of the CC core and an agent for the calling channel
*
* This function will check to make sure that the incoming channel
* is allowed to request CC by making sure that the incoming channel
* has not exceeded its maximum number of allowed agents.
*
* Should that check pass, the core instance is created, and then the
* agent for the channel.
*
* \param caller_chan The incoming channel for this particular call
* \param called_tree A reference to the tree of called devices. The agent
* will gain a reference to this tree as well
* \param core_id The core_id that this core_instance will assume
* \retval NULL Failed to create the core instance either due to memory allocation
* errors or due to the agent count for the caller being too high
* \retval non-NULL A reference to the newly created cc_core_instance
*/
static struct cc_core_instance *cc_core_init_instance(struct ast_channel *caller_chan,
struct cc_monitor_tree *called_tree, const int core_id, struct cc_control_payload *cc_data);
static const struct {
enum ast_cc_service_type service;
const char *service_string;
} cc_service_to_string_map[] = {
{AST_CC_NONE, "NONE"},
{AST_CC_CCBS, "CCBS"},
{AST_CC_CCNR, "CCNR"},
{AST_CC_CCNL, "CCNL"},
};
static const struct {
enum cc_state state;
const char *state_string;
} cc_state_to_string_map[] = {
{CC_AVAILABLE, "CC is available"},
{CC_CALLER_OFFERED, "CC offered to caller"},
{CC_CALLER_REQUESTED, "CC requested by caller"},
{CC_ACTIVE, "CC accepted by callee"},
{CC_CALLEE_READY, "Callee has become available"},
{CC_CALLER_BUSY, "Callee was ready, but caller is now unavailable"},
{CC_RECALLING, "Caller is attempting to recall"},
{CC_COMPLETE, "Recall complete"},
{CC_FAILED, "CC has failed"},
};
static const char *cc_state_to_string(enum cc_state state)
{
return cc_state_to_string_map[state].state_string;
}
static const char *cc_service_to_string(enum ast_cc_service_type service)
{
return cc_service_to_string_map[service].service_string;
}
static int cc_core_instance_hash_fn(const void *obj, const int flags)
{
const struct cc_core_instance *core_instance = obj;
return core_instance->core_id;
}
static int cc_core_instance_cmp_fn(void *obj, void *arg, int flags)
{
struct cc_core_instance *core_instance1 = obj;
struct cc_core_instance *core_instance2 = arg;
return core_instance1->core_id == core_instance2->core_id ? CMP_MATCH | CMP_STOP : 0;
}
static struct cc_core_instance *find_cc_core_instance(const int core_id)
{
struct cc_core_instance finder = {.core_id = core_id,};
return ao2_t_find(cc_core_instances, &finder, OBJ_POINTER, "Finding a core_instance");
}
struct cc_callback_helper {
ao2_callback_fn *function;
void *args;
const char *type;
};
static int cc_agent_callback_helper(void *obj, void *args, int flags)
{
struct cc_core_instance *core_instance = obj;
struct cc_callback_helper *helper = args;
if (strcmp(core_instance->agent->callbacks->type, helper->type)) {
return 0;
}
return helper->function(core_instance->agent, helper->args, flags);
}
struct ast_cc_agent *ast_cc_agent_callback(int flags, ao2_callback_fn *function, void *args, const char * const type)
{
struct cc_callback_helper helper = {.function = function, .args = args, .type = type};
struct cc_core_instance *core_instance;
if ((core_instance = ao2_t_callback(cc_core_instances, flags, cc_agent_callback_helper, &helper,
"Calling provided agent callback function"))) {
struct ast_cc_agent *agent = cc_ref(core_instance->agent, "An outside entity needs the agent");
cc_unref(core_instance, "agent callback done with the core_instance");
return agent;
}
return NULL;
}
enum match_flags {
/* Only match agents that have not yet
* made a CC request
*/
MATCH_NO_REQUEST = (1 << 0),
/* Only match agents that have made
* a CC request
*/
MATCH_REQUEST = (1 << 1),
};
/* ao2_callbacks for cc_core_instances */
/*!
* \internal
* \brief find a core instance based on its agent
*
* The match flags tell whether we wish to find core instances
* that have a monitor or core instances that do not. Core instances
* with no monitor are core instances for which a caller has not yet
* requested CC. Core instances with a monitor are ones for which the
* caller has requested CC.
*/
static int match_agent(void *obj, void *arg, void *data, int flags)
{
struct cc_core_instance *core_instance = obj;
const char *name = arg;
unsigned long match_flags = *(unsigned long *)data;
int possible_match = 0;
if ((match_flags & MATCH_NO_REQUEST) && core_instance->current_state < CC_CALLER_REQUESTED) {
possible_match = 1;
}
if ((match_flags & MATCH_REQUEST) && core_instance->current_state >= CC_CALLER_REQUESTED) {
possible_match = 1;
}
if (!possible_match) {
return 0;
}
if (!strcmp(core_instance->agent->device_name, name)) {
return CMP_MATCH | CMP_STOP;
}
return 0;
}
struct count_agents_cb_data {
int count;
int core_id_exception;
};
/*!
* \internal
* \brief Count the number of agents a specific interface is using
*
* We're only concerned with the number of agents that have requested
* CC, so we restrict our search to core instances which have a non-NULL
* monitor pointer
*/
static int count_agents_cb(void *obj, void *arg, void *data, int flags)
{
struct cc_core_instance *core_instance = obj;
const char *name = arg;
struct count_agents_cb_data *cb_data = data;
if (cb_data->core_id_exception == core_instance->core_id) {
ast_log_dynamic_level(cc_logger_level, "Found agent with core_id %d but not counting it toward total\n", core_instance->core_id);
return 0;
}
if (core_instance->current_state >= CC_CALLER_REQUESTED && !strcmp(core_instance->agent->device_name, name)) {
cb_data->count++;
}
return 0;
}
/* default values mapping from cc_state to ast_dev_state */
#define CC_AVAILABLE_DEVSTATE_DEFAULT AST_DEVICE_NOT_INUSE
#define CC_CALLER_OFFERED_DEVSTATE_DEFAULT AST_DEVICE_NOT_INUSE
#define CC_CALLER_REQUESTED_DEVSTATE_DEFAULT AST_DEVICE_NOT_INUSE
#define CC_ACTIVE_DEVSTATE_DEFAULT AST_DEVICE_INUSE
#define CC_CALLEE_READY_DEVSTATE_DEFAULT AST_DEVICE_RINGING
#define CC_CALLER_BUSY_DEVSTATE_DEFAULT AST_DEVICE_ONHOLD
#define CC_RECALLING_DEVSTATE_DEFAULT AST_DEVICE_RINGING
#define CC_COMPLETE_DEVSTATE_DEFAULT AST_DEVICE_NOT_INUSE
#define CC_FAILED_DEVSTATE_DEFAULT AST_DEVICE_NOT_INUSE
/*!
* \internal
* \brief initialization of defaults for CC_STATE to DEVICE_STATE map
*/
static enum ast_device_state cc_state_to_devstate_map[] = {
[CC_AVAILABLE] = CC_AVAILABLE_DEVSTATE_DEFAULT,
[CC_CALLER_OFFERED] = CC_CALLER_OFFERED_DEVSTATE_DEFAULT,
[CC_CALLER_REQUESTED] = CC_CALLER_REQUESTED_DEVSTATE_DEFAULT,
[CC_ACTIVE] = CC_ACTIVE_DEVSTATE_DEFAULT,
[CC_CALLEE_READY] = CC_CALLEE_READY_DEVSTATE_DEFAULT,
[CC_CALLER_BUSY] = CC_CALLER_BUSY_DEVSTATE_DEFAULT,
[CC_RECALLING] = CC_RECALLING_DEVSTATE_DEFAULT,
[CC_COMPLETE] = CC_COMPLETE_DEVSTATE_DEFAULT,
[CC_FAILED] = CC_FAILED_DEVSTATE_DEFAULT,
};
/*!
* \intenral
* \brief lookup the ast_device_state mapped to cc_state
*
* \return the correponding DEVICE STATE from the cc_state_to_devstate_map
* when passed an internal state.
*/
static enum ast_device_state cc_state_to_devstate(enum cc_state state)
{
return cc_state_to_devstate_map[state];
}
/*!
* \internal
* \brief Callback for devicestate providers
*
* \details
* Initialize with ast_devstate_prov_add() and returns the corresponding
* DEVICE STATE based on the current CC_STATE state machine if the requested
* device is found and is a generic device. Returns the equivalent of
* CC_FAILED, which defaults to NOT_INUSE, if no device is found. NOT_INUSE would
* indicate that there is no presence of any pending call back.
*/
static enum ast_device_state ccss_device_state(const char *device_name)
{
struct cc_core_instance *core_instance;
unsigned long match_flags;
enum ast_device_state cc_current_state;
match_flags = MATCH_NO_REQUEST;
core_instance = ao2_t_callback_data(cc_core_instances, 0, match_agent,
(char *) device_name, &match_flags,
"Find Core Instance for ccss_device_state reqeust.");
if (!core_instance) {
ast_log_dynamic_level(cc_logger_level,
"Couldn't find a core instance for caller %s\n", device_name);
return cc_state_to_devstate(CC_FAILED);
}
ast_log_dynamic_level(cc_logger_level,
"Core %d: Found core_instance for caller %s in state %s\n",
core_instance->core_id, device_name, cc_state_to_string(core_instance->current_state));
if (strcmp(core_instance->agent->callbacks->type, "generic")) {
ast_log_dynamic_level(cc_logger_level,
"Core %d: Device State is only for generic agent types.\n",
core_instance->core_id);
cc_unref(core_instance, "Unref core_instance since ccss_device_state was called with native agent");
return cc_state_to_devstate(CC_FAILED);
}
cc_current_state = cc_state_to_devstate(core_instance->current_state);
cc_unref(core_instance, "Unref core_instance done with ccss_device_state");
return cc_current_state;
}
/*!
* \internal
* \brief Notify Device State Changes from CC STATE MACHINE
*
* \details
* Any time a state is changed, we call this function to notify the DEVICE STATE
* subsystem of the change so that subscribed phones to any corresponding hints that
* are using that state are updated.
*/
static void ccss_notify_device_state_change(const char *device, enum cc_state state)
{
enum ast_device_state devstate;
devstate = cc_state_to_devstate(state);
ast_log_dynamic_level(cc_logger_level,
"Notification of CCSS state change to '%s', device state '%s' for device '%s'",
cc_state_to_string(state), ast_devstate2str(devstate), device);
ast_devstate_changed(devstate, "ccss:%s", device);
}
#define CC_OFFER_TIMER_DEFAULT 20 /* Seconds */
#define CCNR_AVAILABLE_TIMER_DEFAULT 7200 /* Seconds */
#define CCBS_AVAILABLE_TIMER_DEFAULT 4800 /* Seconds */
#define CC_RECALL_TIMER_DEFAULT 20 /* Seconds */
#define CC_MAX_AGENTS_DEFAULT 5
#define CC_MAX_MONITORS_DEFAULT 5
#define GLOBAL_CC_MAX_REQUESTS_DEFAULT 20
static const struct ast_cc_config_params cc_default_params = {
.cc_agent_policy = AST_CC_AGENT_NEVER,
.cc_monitor_policy = AST_CC_MONITOR_NEVER,
.cc_offer_timer = CC_OFFER_TIMER_DEFAULT,
.ccnr_available_timer = CCNR_AVAILABLE_TIMER_DEFAULT,
.ccbs_available_timer = CCBS_AVAILABLE_TIMER_DEFAULT,
.cc_recall_timer = CC_RECALL_TIMER_DEFAULT,
.cc_max_agents = CC_MAX_AGENTS_DEFAULT,
.cc_max_monitors = CC_MAX_MONITORS_DEFAULT,
.cc_callback_macro = "",
.cc_agent_dialstring = "",
};
void ast_cc_default_config_params(struct ast_cc_config_params *params)
{
*params = cc_default_params;
}
struct ast_cc_config_params *__ast_cc_config_params_init(const char *file, int line, const char *function)
{
#if defined(__AST_DEBUG_MALLOC)
struct ast_cc_config_params *params = __ast_malloc(sizeof(*params), file, line, function);
#else
struct ast_cc_config_params *params = ast_malloc(sizeof(*params));
#endif
if (!params) {
return NULL;
}
ast_cc_default_config_params(params);
return params;
}
void ast_cc_config_params_destroy(struct ast_cc_config_params *params)
{
ast_free(params);
}
static enum ast_cc_agent_policies str_to_agent_policy(const char * const value)
{
if (!strcasecmp(value, "never")) {
return AST_CC_AGENT_NEVER;
} else if (!strcasecmp(value, "native")) {
return AST_CC_AGENT_NATIVE;
} else if (!strcasecmp(value, "generic")) {
return AST_CC_AGENT_GENERIC;
} else {
ast_log(LOG_WARNING, "%s is an invalid value for cc_agent_policy. Switching to 'never'\n", value);
return AST_CC_AGENT_NEVER;
}
}
static enum ast_cc_monitor_policies str_to_monitor_policy(const char * const value)
{
if (!strcasecmp(value, "never")) {
return AST_CC_MONITOR_NEVER;
} else if (!strcasecmp(value, "native")) {
return AST_CC_MONITOR_NATIVE;
} else if (!strcasecmp(value, "generic")) {
return AST_CC_MONITOR_GENERIC;
} else if (!strcasecmp(value, "always")) {
return AST_CC_MONITOR_ALWAYS;
} else {
ast_log(LOG_WARNING, "%s is an invalid value for cc_monitor_policy. Switching to 'never'\n", value);
return AST_CC_MONITOR_NEVER;
}
}
static const char *agent_policy_to_str(enum ast_cc_agent_policies policy)
{
switch (policy) {
case AST_CC_AGENT_NEVER:
return "never";
case AST_CC_AGENT_NATIVE:
return "native";
case AST_CC_AGENT_GENERIC:
return "generic";
default:
/* This should never happen... */
return "";
}
}
static const char *monitor_policy_to_str(enum ast_cc_monitor_policies policy)
{
switch (policy) {
case AST_CC_MONITOR_NEVER:
return "never";
case AST_CC_MONITOR_NATIVE:
return "native";
case AST_CC_MONITOR_GENERIC:
return "generic";
case AST_CC_MONITOR_ALWAYS:
return "always";
default:
/* This should never happen... */
return "";
}
}
int ast_cc_get_param(struct ast_cc_config_params *params, const char * const name,
char *buf, size_t buf_len)
{
const char *value = NULL;
if (!strcasecmp(name, "cc_callback_macro")) {
value = ast_get_cc_callback_macro(params);
} else if (!strcasecmp(name, "cc_agent_policy")) {
value = agent_policy_to_str(ast_get_cc_agent_policy(params));
} else if (!strcasecmp(name, "cc_monitor_policy")) {
value = monitor_policy_to_str(ast_get_cc_monitor_policy(params));
} else if (!strcasecmp(name, "cc_agent_dialstring")) {
value = ast_get_cc_agent_dialstring(params);
}
if (value) {
ast_copy_string(buf, value, buf_len);
return 0;
}
/* The rest of these are all ints of some sort and require some
* snprintf-itude
*/
if (!strcasecmp(name, "cc_offer_timer")) {
snprintf(buf, buf_len, "%u", ast_get_cc_offer_timer(params));
} else if (!strcasecmp(name, "ccnr_available_timer")) {
snprintf(buf, buf_len, "%u", ast_get_ccnr_available_timer(params));
} else if (!strcasecmp(name, "ccbs_available_timer")) {
snprintf(buf, buf_len, "%u", ast_get_ccbs_available_timer(params));
} else if (!strcasecmp(name, "cc_max_agents")) {
snprintf(buf, buf_len, "%u", ast_get_cc_max_agents(params));
} else if (!strcasecmp(name, "cc_max_monitors")) {
snprintf(buf, buf_len, "%u", ast_get_cc_max_monitors(params));
} else if (!strcasecmp(name, "cc_recall_timer")) {
snprintf(buf, buf_len, "%u", ast_get_cc_recall_timer(params));
} else {
ast_log(LOG_WARNING, "%s is not a valid CC parameter. Ignoring.\n", name);
return -1;
}
return 0;
}
int ast_cc_set_param(struct ast_cc_config_params *params, const char * const name,
const char * const value)
{
unsigned int value_as_uint;
if (!strcasecmp(name, "cc_agent_policy")) {
return ast_set_cc_agent_policy(params, str_to_agent_policy(value));
} else if (!strcasecmp(name, "cc_monitor_policy")) {
return ast_set_cc_monitor_policy(params, str_to_monitor_policy(value));
} else if (!strcasecmp(name, "cc_agent_dialstring")) {
ast_set_cc_agent_dialstring(params, value);
} else if (!strcasecmp(name, "cc_callback_macro")) {
ast_set_cc_callback_macro(params, value);
return 0;
}
if (!sscanf(value, "%30u", &value_as_uint) == 1) {
return -1;
}
if (!strcasecmp(name, "cc_offer_timer")) {
ast_set_cc_offer_timer(params, value_as_uint);
} else if (!strcasecmp(name, "ccnr_available_timer")) {
ast_set_ccnr_available_timer(params, value_as_uint);
} else if (!strcasecmp(name, "ccbs_available_timer")) {
ast_set_ccbs_available_timer(params, value_as_uint);
} else if (!strcasecmp(name, "cc_max_agents")) {
ast_set_cc_max_agents(params, value_as_uint);
} else if (!strcasecmp(name, "cc_max_monitors")) {
ast_set_cc_max_monitors(params, value_as_uint);
} else if (!strcasecmp(name, "cc_recall_timer")) {
ast_set_cc_recall_timer(params, value_as_uint);
} else {
ast_log(LOG_WARNING, "%s is not a valid CC parameter. Ignoring.\n", name);
return -1;
}
return 0;
}
int ast_cc_is_config_param(const char * const name)
{
return (!strcasecmp(name, "cc_agent_policy") ||
!strcasecmp(name, "cc_monitor_policy") ||
!strcasecmp(name, "cc_offer_timer") ||
!strcasecmp(name, "ccnr_available_timer") ||
!strcasecmp(name, "ccbs_available_timer") ||
!strcasecmp(name, "cc_max_agents") ||
!strcasecmp(name, "cc_max_monitors") ||
!strcasecmp(name, "cc_callback_macro") ||
!strcasecmp(name, "cc_agent_dialstring") ||
!strcasecmp(name, "cc_recall_timer"));
}
void ast_cc_copy_config_params(struct ast_cc_config_params *dest, const struct ast_cc_config_params *src)
{
*dest = *src;
}
enum ast_cc_agent_policies ast_get_cc_agent_policy(struct ast_cc_config_params *config)
{
return config->cc_agent_policy;
}
int ast_set_cc_agent_policy(struct ast_cc_config_params *config, enum ast_cc_agent_policies value)
{
/* Screw C and its weak type checking for making me have to do this
* validation at runtime.
*/
if (value < AST_CC_AGENT_NEVER || value > AST_CC_AGENT_GENERIC) {
return -1;
}
config->cc_agent_policy = value;
return 0;
}
enum ast_cc_monitor_policies ast_get_cc_monitor_policy(struct ast_cc_config_params *config)
{
return config->cc_monitor_policy;
}
int ast_set_cc_monitor_policy(struct ast_cc_config_params *config, enum ast_cc_monitor_policies value)
{
/* Screw C and its weak type checking for making me have to do this
* validation at runtime.
*/
if (value < AST_CC_MONITOR_NEVER || value > AST_CC_MONITOR_ALWAYS) {
return -1;
}
config->cc_monitor_policy = value;
return 0;
}
unsigned int ast_get_cc_offer_timer(struct ast_cc_config_params *config)
{
return config->cc_offer_timer;
}
void ast_set_cc_offer_timer(struct ast_cc_config_params *config, unsigned int value)
{
/* 0 is an unreasonable value for any timer. Stick with the default */
if (value == 0) {
ast_log(LOG_WARNING, "0 is an invalid value for cc_offer_timer. Retaining value as %u\n", config->cc_offer_timer);
return;
}
config->cc_offer_timer = value;
}
unsigned int ast_get_ccnr_available_timer(struct ast_cc_config_params *config)
{
return config->ccnr_available_timer;
}
void ast_set_ccnr_available_timer(struct ast_cc_config_params *config, unsigned int value)
{
/* 0 is an unreasonable value for any timer. Stick with the default */
if (value == 0) {
ast_log(LOG_WARNING, "0 is an invalid value for ccnr_available_timer. Retaining value as %u\n", config->ccnr_available_timer);
return;
}
config->ccnr_available_timer = value;
}
unsigned int ast_get_cc_recall_timer(struct ast_cc_config_params *config)
{
return config->cc_recall_timer;
}
void ast_set_cc_recall_timer(struct ast_cc_config_params *config, unsigned int value)
{
/* 0 is an unreasonable value for any timer. Stick with the default */
if (value == 0) {
ast_log(LOG_WARNING, "0 is an invalid value for ccnr_available_timer. Retaining value as %u\n", config->cc_recall_timer);
return;
}
config->cc_recall_timer = value;
}
unsigned int ast_get_ccbs_available_timer(struct ast_cc_config_params *config)
{
return config->ccbs_available_timer;
}
void ast_set_ccbs_available_timer(struct ast_cc_config_params *config, unsigned int value)
{
/* 0 is an unreasonable value for any timer. Stick with the default */
if (value == 0) {
ast_log(LOG_WARNING, "0 is an invalid value for ccbs_available_timer. Retaining value as %u\n", config->ccbs_available_timer);
return;
}
config->ccbs_available_timer = value;
}
const char *ast_get_cc_agent_dialstring(struct ast_cc_config_params *config)
{
return config->cc_agent_dialstring;
}
void ast_set_cc_agent_dialstring(struct ast_cc_config_params *config, const char *const value)
{
if (ast_strlen_zero(value)) {
config->cc_agent_dialstring[0] = '\0';
} else {
ast_copy_string(config->cc_agent_dialstring, value, sizeof(config->cc_agent_dialstring));
}
}
unsigned int ast_get_cc_max_agents(struct ast_cc_config_params *config)
{
return config->cc_max_agents;
}
void ast_set_cc_max_agents(struct ast_cc_config_params *config, unsigned int value)
{
config->cc_max_agents = value;
}
unsigned int ast_get_cc_max_monitors(struct ast_cc_config_params *config)
{
return config->cc_max_monitors;
}
void ast_set_cc_max_monitors(struct ast_cc_config_params *config, unsigned int value)
{
config->cc_max_monitors = value;
}
const char *ast_get_cc_callback_macro(struct ast_cc_config_params *config)
{
return config->cc_callback_macro;
}
void ast_set_cc_callback_macro(struct ast_cc_config_params *config, const char * const value)
{
if (ast_strlen_zero(value)) {
config->cc_callback_macro[0] = '\0';
} else {
ast_copy_string(config->cc_callback_macro, value, sizeof(config->cc_callback_macro));
}
}
struct cc_monitor_backend {
AST_LIST_ENTRY(cc_monitor_backend) next;
const struct ast_cc_monitor_callbacks *callbacks;
};
AST_RWLIST_HEAD_STATIC(cc_monitor_backends, cc_monitor_backend);
int ast_cc_monitor_register(const struct ast_cc_monitor_callbacks *callbacks)
{
struct cc_monitor_backend *backend = ast_calloc(1, sizeof(*backend));
if (!backend) {
return -1;
}
backend->callbacks = callbacks;
AST_RWLIST_WRLOCK(&cc_monitor_backends);
AST_RWLIST_INSERT_TAIL(&cc_monitor_backends, backend, next);
AST_RWLIST_UNLOCK(&cc_monitor_backends);
return 0;
}
static const struct ast_cc_monitor_callbacks *find_monitor_callbacks(const char * const type)
{
struct cc_monitor_backend *backend;
const struct ast_cc_monitor_callbacks *callbacks = NULL;
AST_RWLIST_RDLOCK(&cc_monitor_backends);
AST_RWLIST_TRAVERSE(&cc_monitor_backends, backend, next) {
if (!strcmp(backend->callbacks->type, type)) {
ast_log_dynamic_level(cc_logger_level, "Returning monitor backend %s\n", backend->callbacks->type);
callbacks = backend->callbacks;
break;
}
}
AST_RWLIST_UNLOCK(&cc_monitor_backends);
return callbacks;
}
void ast_cc_monitor_unregister(const struct ast_cc_monitor_callbacks *callbacks)
{
struct cc_monitor_backend *backend;
AST_RWLIST_WRLOCK(&cc_monitor_backends);
AST_RWLIST_TRAVERSE_SAFE_BEGIN(&cc_monitor_backends, backend, next) {
if (backend->callbacks == callbacks) {
AST_RWLIST_REMOVE_CURRENT(next);
ast_free(backend);
break;
}
}
AST_RWLIST_TRAVERSE_SAFE_END;
AST_RWLIST_UNLOCK(&cc_monitor_backends);
}
struct cc_agent_backend {
AST_LIST_ENTRY(cc_agent_backend) next;
const struct ast_cc_agent_callbacks *callbacks;
};
AST_RWLIST_HEAD_STATIC(cc_agent_backends, cc_agent_backend);
int ast_cc_agent_register(const struct ast_cc_agent_callbacks *callbacks)
{
struct cc_agent_backend *backend = ast_calloc(1, sizeof(*backend));
if (!backend) {
return -1;
}
backend->callbacks = callbacks;
AST_RWLIST_WRLOCK(&cc_agent_backends);
AST_RWLIST_INSERT_TAIL(&cc_agent_backends, backend, next);
AST_RWLIST_UNLOCK(&cc_agent_backends);
return 0;
}
void ast_cc_agent_unregister(const struct ast_cc_agent_callbacks *callbacks)
{
struct cc_agent_backend *backend;
AST_RWLIST_WRLOCK(&cc_agent_backends);
AST_RWLIST_TRAVERSE_SAFE_BEGIN(&cc_agent_backends, backend, next) {
if (backend->callbacks == callbacks) {
AST_RWLIST_REMOVE_CURRENT(next);
ast_free(backend);
break;
}
}
AST_RWLIST_TRAVERSE_SAFE_END;
AST_RWLIST_UNLOCK(&cc_agent_backends);
}
static const struct ast_cc_agent_callbacks *find_agent_callbacks(struct ast_channel *chan)
{
struct cc_agent_backend *backend;
const struct ast_cc_agent_callbacks *callbacks = NULL;
struct ast_cc_config_params *cc_params;
char type[32];
cc_params = ast_channel_get_cc_config_params(chan);
if (!cc_params) {
return NULL;
}
switch (ast_get_cc_agent_policy(cc_params)) {
case AST_CC_AGENT_GENERIC:
ast_copy_string(type, "generic", sizeof(type));
break;
case AST_CC_AGENT_NATIVE:
ast_channel_get_cc_agent_type(chan, type, sizeof(type));
break;
default:
ast_log_dynamic_level(cc_logger_level, "Not returning agent callbacks since this channel is configured not to have a CC agent\n");
return NULL;
}
AST_RWLIST_RDLOCK(&cc_agent_backends);
AST_RWLIST_TRAVERSE(&cc_agent_backends, backend, next) {
if (!strcmp(backend->callbacks->type, type)) {
ast_log_dynamic_level(cc_logger_level, "Returning agent backend %s\n", backend->callbacks->type);
callbacks = backend->callbacks;
break;
}
}
AST_RWLIST_UNLOCK(&cc_agent_backends);
return callbacks;
}
/*!
* \internal
* \brief Determine if the given device state is considered available by generic CCSS.
* \since 1.8
*
* \param state Device state to test.
*
* \return TRUE if the given device state is considered available by generic CCSS.
*/
static int cc_generic_is_device_available(enum ast_device_state state)
{
return state == AST_DEVICE_NOT_INUSE || state == AST_DEVICE_UNKNOWN;
}
static int cc_generic_monitor_request_cc(struct ast_cc_monitor *monitor, int *available_timer_id);
static int cc_generic_monitor_suspend(struct ast_cc_monitor *monitor);
static int cc_generic_monitor_unsuspend(struct ast_cc_monitor *monitor);
static int cc_generic_monitor_cancel_available_timer(struct ast_cc_monitor *monitor, int *sched_id);
static void cc_generic_monitor_destructor(void *private_data);
static struct ast_cc_monitor_callbacks generic_monitor_cbs = {
.type = "generic",
.request_cc = cc_generic_monitor_request_cc,
.suspend = cc_generic_monitor_suspend,
.unsuspend = cc_generic_monitor_unsuspend,
.cancel_available_timer = cc_generic_monitor_cancel_available_timer,
.destructor = cc_generic_monitor_destructor,
};
struct ao2_container *generic_monitors;
struct generic_monitor_instance {
int core_id;
int is_suspended;
int monitoring;
AST_LIST_ENTRY(generic_monitor_instance) next;
};
struct generic_monitor_instance_list {
const char *device_name;
enum ast_device_state current_state;
/* If there are multiple instances monitoring the
* same device and one should fail, we need to know
* whether to signal that the device can be recalled.
* The problem is that the device state is not enough
* to check. If a caller has requested CCNR, then the
* fact that the device is available does not indicate
* that the device is ready to be recalled. Instead, as
* soon as one instance of the monitor becomes available
* for a recall, we mark the entire list as being fit
* for recall. If a CCNR request comes in, then we will
* have to mark the list as unfit for recall since this
* is a clear indicator that the person at the monitored
* device has gone away and is actuall not fit to be
* recalled
*/
int fit_for_recall;
struct ast_event_sub *sub;
AST_LIST_HEAD_NOLOCK(, generic_monitor_instance) list;
};
/*!
* \brief private data for generic device monitor
*/
struct generic_monitor_pvt {
/*!
* We need the device name during destruction so we
* can find the appropriate item to destroy.
*/
const char *device_name;
/*!
* We need the core ID for similar reasons. Once we
* find the appropriate item in our ao2_container, we
* need to remove the appropriate cc_monitor from the
* list of monitors.
*/
int core_id;
};
static int generic_monitor_hash_fn(const void *obj, const int flags)
{
const struct generic_monitor_instance_list *generic_list = obj;
return ast_str_hash(generic_list->device_name);
}
static int generic_monitor_cmp_fn(void *obj, void *arg, int flags)
{
const struct generic_monitor_instance_list *generic_list1 = obj;
const struct generic_monitor_instance_list *generic_list2 = arg;
return !strcmp(generic_list1->device_name, generic_list2->device_name) ? CMP_MATCH | CMP_STOP : 0;
}
static struct generic_monitor_instance_list *find_generic_monitor_instance_list(const char * const device_name)
{
struct generic_monitor_instance_list finder = {.device_name = device_name};
return ao2_t_find(generic_monitors, &finder, OBJ_POINTER, "Finding generic monitor instance list");
}
static void generic_monitor_instance_list_destructor(void *obj)
{
struct generic_monitor_instance_list *generic_list = obj;
struct generic_monitor_instance *generic_instance;
generic_list->sub = ast_event_unsubscribe(generic_list->sub);
while ((generic_instance = AST_LIST_REMOVE_HEAD(&generic_list->list, next))) {
ast_free(generic_instance);
}
ast_free((char *)generic_list->device_name);
}
static void generic_monitor_devstate_cb(const struct ast_event *event, void *userdata);
static struct generic_monitor_instance_list *create_new_generic_list(struct ast_cc_monitor *monitor)
{
struct generic_monitor_instance_list *generic_list = ao2_t_alloc(sizeof(*generic_list),
generic_monitor_instance_list_destructor, "allocate generic monitor instance list");
if (!generic_list) {
return NULL;
}
if (!(generic_list->device_name = ast_strdup(monitor->interface->device_name))) {
cc_unref(generic_list, "Failed to strdup the monitor's device name");
return NULL;
}
if (!(generic_list->sub = ast_event_subscribe(AST_EVENT_DEVICE_STATE,
generic_monitor_devstate_cb, "Requesting CC", NULL,
AST_EVENT_IE_DEVICE, AST_EVENT_IE_PLTYPE_STR, monitor->interface->device_name,
AST_EVENT_IE_STATE, AST_EVENT_IE_PLTYPE_EXISTS,
AST_EVENT_IE_END))) {
cc_unref(generic_list, "Failed to subscribe to device state");
return NULL;
}
generic_list->current_state = ast_device_state(monitor->interface->device_name);
ao2_t_link(generic_monitors, generic_list, "linking new generic monitor instance list");
return generic_list;
}
struct generic_tp_cb_data {
const char *device_name;
enum ast_device_state new_state;
};
static int generic_monitor_devstate_tp_cb(void *data)
{
struct generic_tp_cb_data *gtcd = data;
enum ast_device_state new_state = gtcd->new_state;
enum ast_device_state previous_state = gtcd->new_state;
const char *monitor_name = gtcd->device_name;
struct generic_monitor_instance_list *generic_list;
struct generic_monitor_instance *generic_instance;
if (!(generic_list = find_generic_monitor_instance_list(monitor_name))) {
/* The most likely cause for this is that we destroyed the monitor in the
* time between subscribing to its device state and the time this executes.
* Not really a big deal.
*/
ast_free((char *) gtcd->device_name);
ast_free(gtcd);
return 0;
}
if (generic_list->current_state == new_state) {
/* The device state hasn't actually changed, so we don't really care */
cc_unref(generic_list, "Kill reference of generic list in devstate taskprocessor callback");
ast_free((char *) gtcd->device_name);
ast_free(gtcd);
return 0;
}
previous_state = generic_list->current_state;
generic_list->current_state = new_state;
if (cc_generic_is_device_available(new_state) &&
(previous_state == AST_DEVICE_INUSE || previous_state == AST_DEVICE_UNAVAILABLE ||
previous_state == AST_DEVICE_BUSY)) {
AST_LIST_TRAVERSE(&generic_list->list, generic_instance, next) {
if (!generic_instance->is_suspended && generic_instance->monitoring) {
generic_instance->monitoring = 0;
generic_list->fit_for_recall = 1;
ast_cc_monitor_callee_available(generic_instance->core_id, "Generic monitored party has become available");
break;
}
}
}
cc_unref(generic_list, "Kill reference of generic list in devstate taskprocessor callback");
ast_free((char *) gtcd->device_name);
ast_free(gtcd);
return 0;
}
static void generic_monitor_devstate_cb(const struct ast_event *event, void *userdata)
{
/* Wow, it's cool that we've picked up on a state change, but we really want
* the actual work to be done in the core's taskprocessor execution thread
* so that all monitor operations can be serialized. Locks?! We don't need
* no steenkin' locks!
*/
struct generic_tp_cb_data *gtcd = ast_calloc(1, sizeof(*gtcd));
if (!gtcd) {
return;
}
if (!(gtcd->device_name = ast_strdup(ast_event_get_ie_str(event, AST_EVENT_IE_DEVICE)))) {
ast_free(gtcd);
return;
}
gtcd->new_state = ast_event_get_ie_uint(event, AST_EVENT_IE_STATE);
if (ast_taskprocessor_push(cc_core_taskprocessor, generic_monitor_devstate_tp_cb, gtcd)) {
ast_free((char *)gtcd->device_name);
ast_free(gtcd);
}
}
int ast_cc_available_timer_expire(const void *data)
{
struct ast_cc_monitor *monitor = (struct ast_cc_monitor *) data;
int res;
monitor->available_timer_id = -1;
res = ast_cc_monitor_failed(monitor->core_id, monitor->interface->device_name, "Available timer expired for monitor");
cc_unref(monitor, "Unref reference from scheduler\n");
return res;
}
static int cc_generic_monitor_request_cc(struct ast_cc_monitor *monitor, int *available_timer_id)
{
struct generic_monitor_instance_list *generic_list;
struct generic_monitor_instance *generic_instance;
struct generic_monitor_pvt *gen_mon_pvt;
enum ast_cc_service_type service = monitor->service_offered;
int when;
/* First things first. Native channel drivers will have their private data allocated
* at the time that they tell the core that they can offer CC. Generic is quite a bit
* different, and we wait until this point to allocate our private data.
*/
if (!(gen_mon_pvt = ast_calloc(1, sizeof(*gen_mon_pvt)))) {
return -1;
}
if (!(gen_mon_pvt->device_name = ast_strdup(monitor->interface->device_name))) {
ast_free(gen_mon_pvt);
return -1;
}
gen_mon_pvt->core_id = monitor->core_id;
monitor->private_data = gen_mon_pvt;
if (!(generic_list = find_generic_monitor_instance_list(monitor->interface->device_name))) {
if (!(generic_list = create_new_generic_list(monitor))) {
return -1;
}
}
if (!(generic_instance = ast_calloc(1, sizeof(*generic_instance)))) {
/* The generic monitor destructor will take care of the appropriate
* deallocations
*/
cc_unref(generic_list, "Generic monitor instance failed to allocate");
return -1;
}
generic_instance->core_id = monitor->core_id;
generic_instance->monitoring = 1;
AST_LIST_INSERT_TAIL(&generic_list->list, generic_instance, next);
when = service == AST_CC_CCBS ? ast_get_ccbs_available_timer(monitor->interface->config_params) :
ast_get_ccnr_available_timer(monitor->interface->config_params);
*available_timer_id = ast_sched_add(cc_sched_context, when * 1000,
ast_cc_available_timer_expire, cc_ref(monitor, "Give the scheduler a monitor reference"));
if (*available_timer_id == -1) {
cc_unref(monitor, "Failed to schedule available timer. (monitor)");
cc_unref(generic_list, "Failed to schedule available timer. (generic_list)");
return -1;
}
/* If the new instance was created as CCNR, then that means this device is not currently
* fit for recall even if it previously was.
*/
if (service == AST_CC_CCNR || service == AST_CC_CCNL) {
generic_list->fit_for_recall = 0;
}
ast_cc_monitor_request_acked(monitor->core_id, "Generic monitor for %s subscribed to device state.",
monitor->interface->device_name);
cc_unref(generic_list, "Finished with monitor instance reference in request cc callback");
return 0;
}
static int cc_generic_monitor_suspend(struct ast_cc_monitor *monitor)
{
struct generic_monitor_instance_list *generic_list;
struct generic_monitor_instance *generic_instance;
enum ast_device_state state = ast_device_state(monitor->interface->device_name);
if (!(generic_list = find_generic_monitor_instance_list(monitor->interface->device_name))) {
return -1;
}
/* First we need to mark this particular monitor as being suspended. */
AST_LIST_TRAVERSE(&generic_list->list, generic_instance, next) {
if (generic_instance->core_id == monitor->core_id) {
generic_instance->is_suspended = 1;
break;
}
}
/* If the device being suspended is currently in use, then we don't need to
* take any further actions
*/
if (!cc_generic_is_device_available(state)) {
cc_unref(generic_list, "Device is in use. Nothing to do. Unref generic list.");
return 0;
}
/* If the device is not in use, though, then it may be possible to report the
* device's availability using a different monitor which is monitoring the
* same device
*/
AST_LIST_TRAVERSE(&generic_list->list, generic_instance, next) {
if (!generic_instance->is_suspended) {
ast_cc_monitor_callee_available(generic_instance->core_id, "Generic monitored party has become available");
break;
}
}
cc_unref(generic_list, "Done with generic list in suspend callback");
return 0;
}
static int cc_generic_monitor_unsuspend(struct ast_cc_monitor *monitor)
{
struct generic_monitor_instance *generic_instance;
struct generic_monitor_instance_list *generic_list = find_generic_monitor_instance_list(monitor->interface->device_name);
enum ast_device_state state = ast_device_state(monitor->interface->device_name);
if (!generic_list) {
return -1;
}
/* If the device is currently available, we can immediately announce
* its availability
*/
if (cc_generic_is_device_available(state)) {
ast_cc_monitor_callee_available(monitor->core_id, "Generic monitored party has become available");
}
/* In addition, we need to mark this generic_monitor_instance as not being suspended anymore */
AST_LIST_TRAVERSE(&generic_list->list, generic_instance, next) {
if (generic_instance->core_id == monitor->core_id) {
generic_instance->is_suspended = 0;
generic_instance->monitoring = 1;
break;
}
}
cc_unref(generic_list, "Done with generic list in cc_generic_monitor_unsuspend");
return 0;
}
static int cc_generic_monitor_cancel_available_timer(struct ast_cc_monitor *monitor, int *sched_id)
{
ast_assert(sched_id != NULL);
if (*sched_id == -1) {
return 0;
}
ast_log_dynamic_level(cc_logger_level, "Core %d: Canceling generic monitor available timer for monitor %s\n",
monitor->core_id, monitor->interface->device_name);
if (!ast_sched_del(cc_sched_context, *sched_id)) {
cc_unref(monitor, "Remove scheduler's reference to the monitor");
}
*sched_id = -1;
return 0;
}
static void cc_generic_monitor_destructor(void *private_data)
{
struct generic_monitor_pvt *gen_mon_pvt = private_data;
struct generic_monitor_instance_list *generic_list;
struct generic_monitor_instance *generic_instance;
if (!private_data) {
/* If the private data is NULL, that means that the monitor hasn't even
* been created yet, but that the destructor was called. While this sort
* of behavior is useful for native monitors, with a generic one, there is
* nothing in particular to do.
*/
return;
}
ast_log_dynamic_level(cc_logger_level, "Core %d: Destroying generic monitor %s\n",
gen_mon_pvt->core_id, gen_mon_pvt->device_name);
if (!(generic_list = find_generic_monitor_instance_list(gen_mon_pvt->device_name))) {
/* If there's no generic list, that means that the monitor is being destroyed
* before we actually got to request CC. Not a biggie. Same in the situation
* below if the list traversal should complete without finding an entry.
*/
ast_free((char *)gen_mon_pvt->device_name);
ast_free(gen_mon_pvt);
return;
}
AST_LIST_TRAVERSE_SAFE_BEGIN(&generic_list->list, generic_instance, next) {
if (generic_instance->core_id == gen_mon_pvt->core_id) {
AST_LIST_REMOVE_CURRENT(next);
ast_free(generic_instance);
break;
}
}
AST_LIST_TRAVERSE_SAFE_END;
if (AST_LIST_EMPTY(&generic_list->list)) {
/* No more monitors with this device name exist. Time to unlink this
* list from the container
*/
ao2_t_unlink(generic_monitors, generic_list, "Generic list is empty. Unlink it from the container");
} else {
/* There are still instances for this particular device. The situation
* may be that we were attempting a CC recall and a failure occurred, perhaps
* on the agent side. If a failure happens here and the device being monitored
* is available, then we need to signal on the first unsuspended instance that
* the device is available for recall.
*/
/* First things first. We don't even want to consider this action if
* the device in question isn't available right now.
*/
if (generic_list->fit_for_recall
&& cc_generic_is_device_available(generic_list->current_state)) {
AST_LIST_TRAVERSE(&generic_list->list, generic_instance, next) {
if (!generic_instance->is_suspended && generic_instance->monitoring) {
ast_cc_monitor_callee_available(generic_instance->core_id, "Signaling generic monitor "
"availability due to other instance's failure.");
break;
}
}
}
}
cc_unref(generic_list, "Done with generic list in generic monitor destructor");
ast_free((char *)gen_mon_pvt->device_name);
ast_free(gen_mon_pvt);
}
static void cc_interface_destroy(void *data)
{
struct ast_cc_interface *interface = data;
ast_log_dynamic_level(cc_logger_level, "Destroying cc interface %s\n", interface->device_name);
ast_cc_config_params_destroy(interface->config_params);
}
/*!
* \brief Data regarding an extension monitor's child's dialstrings
*
* \details
* In developing CCSS, we had most aspects of its operation finished,
* but there was one looming problem that we had failed to get right.
* In our design document, we stated that when a CC recall occurs, all
* endpoints that had been dialed originally would be called back.
* Unfortunately, our implementation only allowed for devices which had
* active monitors to inhabit the CC_INTERFACES channel variable, thus
* making the automated recall only call monitored devices.
*
* Devices that were not CC-capable, or devices which failed CC at some
* point during the process would not make it into the CC_INTERFACES
* channel variable. This struct is meant as a remedy for the problem.
*/
struct extension_child_dialstring {
/*!
* \brief the original dialstring used to call a particular device
*
* \details
* When someone dials a particular endpoint, the dialstring used in
* the dialplan is copied into this buffer. What's important here is
* that this is the ORIGINAL dialstring, not the dialstring saved on
* a device monitor. The dialstring on a device monitor is what should
* be used when recalling that device. The two dialstrings may not be
* the same.
*
* By keeping a copy of the original dialstring used, we can fall back
* to using it if the device either does not ever offer CC or if the
* device at some point fails for some reason, such as a timer expiration.
*/
char original_dialstring[AST_CHANNEL_NAME];
/*!
* \brief The name of the device being dialed
*
* \details
* This serves mainly as a key when searching for a particular dialstring.
* For instance, let's say that we have called device SIP/400@somepeer. This
* device offers call completion, but then due to some unforeseen circumstance,
* this device backs out and makes CC unavailable. When that happens, we need
* to find the dialstring that corresponds to that device, and we use the
* stored device name as a way to find it.
*
* \note There is one particular case where the device name stored here
* will be empty. This is the case where we fail to request a channel, but we
* still can make use of generic call completion. In such a case, since we never
* were able to request the channel, we can't find what its device name is. In
* this case, however, it is not important because the dialstring is guaranteed
* to be the same both here and in the device monitor.
*/
char device_name[AST_CHANNEL_NAME];
/*!
* \brief Is this structure valid for use in CC_INTERFACES?
*
* \details
* When this structure is first created, all information stored here is planned
* to be used, so we set the is_valid flag. However, if a device offers call
* completion, it will potentially have its own dialstring to use for the recall,
* so we find this structure and clear the is_valid flag. By clearing the is_valid
* flag, we won't try to populate the CC_INTERFACES variable with the dialstring
* stored in this struct. Now, if later, the device which had offered CC should fail,
* perhaps due to a timer expiration, then we need to re-set the is_valid flag. This
* way, we still will end up placing a call to the device again, and the dialstring
* used will be the same as was originally used.
*/
int is_valid;
AST_LIST_ENTRY(extension_child_dialstring) next;
};
/*!
* \brief Private data for an extension monitor
*/
struct extension_monitor_pvt {
AST_LIST_HEAD_NOLOCK(, extension_child_dialstring) child_dialstrings;
};
static void cc_extension_monitor_destructor(void *private_data)
{
struct extension_monitor_pvt *extension_pvt = private_data;
struct extension_child_dialstring *child_dialstring;
/* This shouldn't be possible, but I'm paranoid */
if (!extension_pvt) {
return;
}
while ((child_dialstring = AST_LIST_REMOVE_HEAD(&extension_pvt->child_dialstrings, next))) {
ast_free(child_dialstring);
}
ast_free(extension_pvt);
}
static void cc_monitor_destroy(void *data)
{
struct ast_cc_monitor *monitor = data;
/* During the monitor creation process, it is possible for this
* function to be called prior to when callbacks are assigned
* to the monitor. Also, extension monitors do not have callbacks
* assigned to them, so we wouldn't want to segfault when we try
* to destroy one of them.
*/
ast_log_dynamic_level(cc_logger_level, "Core %d: Calling destructor for monitor %s\n",
monitor->core_id, monitor->interface->device_name);
if (monitor->interface->monitor_class == AST_CC_EXTENSION_MONITOR) {
cc_extension_monitor_destructor(monitor->private_data);
}
if (monitor->callbacks) {
monitor->callbacks->destructor(monitor->private_data);
}
cc_unref(monitor->interface, "Unreffing tree's reference to interface");
ast_free(monitor->dialstring);
}
static void cc_interface_tree_destroy(void *data)
{
struct cc_monitor_tree *cc_interface_tree = data;
struct ast_cc_monitor *monitor;
while ((monitor = AST_LIST_REMOVE_HEAD(cc_interface_tree, next))) {
if (monitor->callbacks) {
monitor->callbacks->cancel_available_timer(monitor, &monitor->available_timer_id);
}
cc_unref(monitor, "Destroying all monitors");
}
AST_LIST_HEAD_DESTROY(cc_interface_tree);
}
/*!
* This counter is used for assigning unique ids
* to CC-enabled dialed interfaces.
*/
static int dialed_cc_interface_counter;
/*!
* \internal
* \brief data stored in CC datastore
*
* The datastore creates a list of interfaces that were
* dialed, including both extensions and devices. In addition
* to the intrinsic data of the tree, some extra information
* is needed for use by app_dial.
*/
struct dialed_cc_interfaces {
/*!
* This value serves a dual-purpose. When dial starts, if the
* dialed_cc_interfaces datastore currently exists on the calling
* channel, then the dial_parent_id will serve as a means of
* letting the new extension cc_monitor we create know
* who his parent is. This value will be the extension
* cc_monitor that dialed the local channel that resulted
* in the new Dial app being called.
*
* In addition, once an extension cc_monitor is created,
* the dial_parent_id will be changed to the id of that newly
* created interface. This way, device interfaces created from
* receiving AST_CONTROL_CC frames can use this field to determine
* who their parent extension interface should be.
*/
unsigned int dial_parent_id;
/*!
* Identifier for the potential CC request that may be made
* based on this call. Even though an instance of the core may
* not be made (since the caller may not request CC), we allocate
* a new core_id at the beginning of the call so that recipient
* channel drivers can have the information handy just in case
* the caller does end up requesting CC.
*/
int core_id;
/*!
* When a new Dial application is started, and the datastore
* already exists on the channel, we can determine if we
* should be adding any new interface information to tree.
*/
char ignore;
/*!
* When it comes time to offer CC to the caller, we only want to offer
* it to the original incoming channel. For nested Dials and outbound
* channels, it is incorrect to attempt such a thing. This flag indicates
* if the channel to which this datastore is attached may be legally
* offered CC when the call is finished.
*/
char is_original_caller;
/*!
* Reference-counted "tree" of interfaces.
*/
struct cc_monitor_tree *interface_tree;
};
/*!
* \internal
* \brief Destructor function for cc_interfaces datastore
*
* This function will free the actual datastore and drop
* the refcount for the monitor tree by one. In cases
* where CC can actually be used, this unref will not
* result in the destruction of the monitor tree, because
* the CC core will still have a reference.
*
* \param data The dialed_cc_interfaces struct to destroy
*/
static void dialed_cc_interfaces_destroy(void *data)
{
struct dialed_cc_interfaces *cc_interfaces = data;
cc_unref(cc_interfaces->interface_tree, "Unref dial's ref to monitor tree");
ast_free(cc_interfaces);
}
/*!
* \internal
* \brief Duplicate callback for cc_interfaces datastore
*
* Integers are copied by value, but the monitor tree
* is done via a shallow copy and a bump of the refcount.
* This way, sub-Dials will be appending interfaces onto
* the same list as this call to Dial.
*
* \param data The old dialed_cc_interfaces we want to copy
* \retval NULL Could not allocate memory for new dialed_cc_interfaces
* \retval non-NULL The new copy of the dialed_cc_interfaces
*/
static void *dialed_cc_interfaces_duplicate(void *data)
{
struct dialed_cc_interfaces *old_cc_interfaces = data;
struct dialed_cc_interfaces *new_cc_interfaces = ast_calloc(1, sizeof(*new_cc_interfaces));
if (!new_cc_interfaces) {
return NULL;
}
new_cc_interfaces->ignore = old_cc_interfaces->ignore;
new_cc_interfaces->dial_parent_id = old_cc_interfaces->dial_parent_id;
new_cc_interfaces->is_original_caller = 0;
cc_ref(old_cc_interfaces->interface_tree, "New ref due to duplication of monitor tree");
new_cc_interfaces->core_id = old_cc_interfaces->core_id;
new_cc_interfaces->interface_tree = old_cc_interfaces->interface_tree;
return new_cc_interfaces;
}
/*!
* \internal
* \brief information regarding the dialed_cc_interfaces datastore
*
* The dialed_cc_interfaces datastore is responsible for keeping track
* of what CC-enabled interfaces have been dialed by the caller. For
* more information regarding the actual structure of the tree, see
* the documentation provided in include/asterisk/ccss.h
*/
static const struct ast_datastore_info dialed_cc_interfaces_info = {
.type = "Dial CC Interfaces",
.duplicate = dialed_cc_interfaces_duplicate,
.destroy = dialed_cc_interfaces_destroy,
};
static struct extension_monitor_pvt *extension_monitor_pvt_init(void)
{
struct extension_monitor_pvt *ext_pvt = ast_calloc(1, sizeof(*ext_pvt));
if (!ext_pvt) {
return NULL;
}
AST_LIST_HEAD_INIT_NOLOCK(&ext_pvt->child_dialstrings);
return ext_pvt;
}
void ast_cc_extension_monitor_add_dialstring(struct ast_channel *incoming, const char * const dialstring, const char * const device_name)
{
struct ast_datastore *cc_datastore;
struct dialed_cc_interfaces *cc_interfaces;
struct ast_cc_monitor *monitor;
struct extension_monitor_pvt *extension_pvt;
struct extension_child_dialstring *child_dialstring;
struct cc_monitor_tree *interface_tree;
int id;
ast_channel_lock(incoming);
if (!(cc_datastore = ast_channel_datastore_find(incoming, &dialed_cc_interfaces_info, NULL))) {
ast_channel_unlock(incoming);
return;
}
cc_interfaces = cc_datastore->data;
interface_tree = cc_interfaces->interface_tree;
id = cc_interfaces->dial_parent_id;
ast_channel_unlock(incoming);
AST_LIST_LOCK(interface_tree);
AST_LIST_TRAVERSE(interface_tree, monitor, next) {
if (monitor->id == id) {
break;
}
}
if (!monitor) {
AST_LIST_UNLOCK(interface_tree);
return;
}
extension_pvt = monitor->private_data;
if (!(child_dialstring = ast_calloc(1, sizeof(*child_dialstring)))) {
AST_LIST_UNLOCK(interface_tree);
return;
}
ast_copy_string(child_dialstring->original_dialstring, dialstring, sizeof(child_dialstring->original_dialstring));
ast_copy_string(child_dialstring->device_name, device_name, sizeof(child_dialstring->device_name));
child_dialstring->is_valid = 1;
AST_LIST_INSERT_TAIL(&extension_pvt->child_dialstrings, child_dialstring, next);
AST_LIST_UNLOCK(interface_tree);
}
static void cc_extension_monitor_change_is_valid(struct cc_core_instance *core_instance, unsigned int parent_id, const char * const device_name, int is_valid)
{
struct ast_cc_monitor *monitor_iter;
struct extension_monitor_pvt *extension_pvt;
struct extension_child_dialstring *child_dialstring;
AST_LIST_TRAVERSE(core_instance->monitors, monitor_iter, next) {
if (monitor_iter->id == parent_id) {
break;
}
}
if (!monitor_iter) {
return;
}
extension_pvt = monitor_iter->private_data;
AST_LIST_TRAVERSE(&extension_pvt->child_dialstrings, child_dialstring, next) {
if (!strcmp(child_dialstring->device_name, device_name)) {
child_dialstring->is_valid = is_valid;
break;
}
}
}
/*!
* \internal
* \brief Allocate and initialize an "extension" interface for CC purposes
*
* When app_dial starts, this function is called in order to set up the
* information about the extension in which this Dial is occurring. Any
* devices dialed will have this particular cc_monitor as a parent.
*
* \param exten Extension from which Dial is occurring
* \param context Context to which exten belongs
* \param parent_id What should we set the parent_id of this interface to?
* \retval NULL Memory allocation failure
* \retval non-NULL The newly-created cc_monitor for the extension
*/
static struct ast_cc_monitor *cc_extension_monitor_init(const char * const exten, const char * const context, const unsigned int parent_id)
{
struct ast_str *str = ast_str_alloca(2 * AST_MAX_EXTENSION);
struct ast_cc_interface *cc_interface;
struct ast_cc_monitor *monitor;
ast_str_set(&str, 0, "%s@%s", exten, context);
if (!(cc_interface = ao2_t_alloc(sizeof(*cc_interface) + ast_str_strlen(str), cc_interface_destroy,
"Allocating new ast_cc_interface"))) {
return NULL;
}
if (!(monitor = ao2_t_alloc(sizeof(*monitor), cc_monitor_destroy, "Allocating new ast_cc_monitor"))) {
cc_unref(cc_interface, "failed to allocate the monitor, so unref the interface");
return NULL;
}
if (!(monitor->private_data = extension_monitor_pvt_init())) {
cc_unref(monitor, "Failed to initialize extension monitor private data. uref monitor");
cc_unref(cc_interface, "Failed to initialize extension monitor private data. unref cc_interface");
}
monitor->id = ast_atomic_fetchadd_int(&dialed_cc_interface_counter, +1);
monitor->parent_id = parent_id;
cc_interface->monitor_type = "extension";
cc_interface->monitor_class = AST_CC_EXTENSION_MONITOR;
strcpy(cc_interface->device_name, ast_str_buffer(str));
monitor->interface = cc_interface;
ast_log_dynamic_level(cc_logger_level, "Created an extension cc interface for '%s' with id %d and parent %d\n", cc_interface->device_name, monitor->id, monitor->parent_id);
return monitor;
}
/*!
* \internal
* \brief allocate dialed_cc_interfaces datastore and initialize fields
*
* This function is called when Situation 1 occurs in ast_cc_call_init.
* See that function for more information on what Situation 1 is.
*
* In this particular case, we have to do a lot of memory allocation in order
* to create the datastore, the data for the datastore, the tree of interfaces
* that we'll be adding to, and the initial extension interface for this Dial
* attempt.
*
* \param chan The channel onto which the datastore should be added.
* \retval -1 An error occurred
* \retval 0 Success
*/
static int cc_interfaces_datastore_init(struct ast_channel *chan) {
struct dialed_cc_interfaces *interfaces;
struct ast_cc_monitor *monitor;
struct ast_datastore *dial_cc_datastore;
/*XXX This may be a bit controversial. In an attempt to not allocate
* extra resources, I make sure that a future request will be within
* limits. The problem here is that it is reasonable to think that
* even if we're not within the limits at this point, we may be by
* the time the requestor will have made his request. This may be
* deleted at some point.
*/
if (!ast_cc_request_is_within_limits()) {
return 0;
}
if (!(interfaces = ast_calloc(1, sizeof(*interfaces)))) {
return -1;
}
if (!(monitor = cc_extension_monitor_init(S_OR(chan->macroexten, chan->exten), S_OR(chan->macrocontext, chan->context), 0))) {
ast_free(interfaces);
return -1;
}
if (!(dial_cc_datastore = ast_datastore_alloc(&dialed_cc_interfaces_info, NULL))) {
cc_unref(monitor, "Could not allocate the dialed interfaces datastore. Unreffing monitor");
ast_free(interfaces);
return -1;
}
if (!(interfaces->interface_tree = ao2_t_alloc(sizeof(*interfaces->interface_tree), cc_interface_tree_destroy,
"Allocate monitor tree"))) {
ast_datastore_free(dial_cc_datastore);
cc_unref(monitor, "Could not allocate monitor tree on dialed interfaces datastore. Unreffing monitor");
ast_free(interfaces);
return -1;
}
/* Finally, all that allocation is done... */
AST_LIST_HEAD_INIT(interfaces->interface_tree);
AST_LIST_INSERT_TAIL(interfaces->interface_tree, monitor, next);
cc_ref(monitor, "List's reference to extension monitor");
dial_cc_datastore->data = interfaces;
dial_cc_datastore->inheritance = DATASTORE_INHERIT_FOREVER;
interfaces->dial_parent_id = monitor->id;
interfaces->core_id = monitor->core_id = ast_atomic_fetchadd_int(&core_id_counter, +1);
interfaces->is_original_caller = 1;
ast_channel_lock(chan);
ast_channel_datastore_add(chan, dial_cc_datastore);
ast_channel_unlock(chan);
cc_unref(monitor, "Unreffing allocation's reference");
return 0;
}
/*!
* \internal
* \brief Call a monitor's destructor before the monitor has been allocated
* \since 1.8
*
* \param monitor_type The type of monitor callbacks to use when calling the destructor
* \param private_data Data allocated by a channel driver that must be freed
*
* \details
* I'll admit, this is a bit evil.
*
* When a channel driver determines that it can offer a call completion service to
* a caller, it is very likely that the channel driver will need to allocate some
* data so that when the time comes to request CC, the channel driver will have the
* necessary data at hand.
*
* The problem is that there are many places where failures may occur before the monitor
* has been properly allocated and had its callbacks assigned to it. If one of these
* failures should occur, then we still need to let the channel driver know that it
* must destroy the data that it allocated.
*
* \return Nothing
*/
static void call_destructor_with_no_monitor(const char * const monitor_type, void *private_data)
{
const struct ast_cc_monitor_callbacks *monitor_callbacks = find_monitor_callbacks(monitor_type);
if (!monitor_callbacks) {
return;
}
monitor_callbacks->destructor(private_data);
}
/*!
* \internal
* \brief Allocate and intitialize a device cc_monitor
*
* For all intents and purposes, this is the same as
* cc_extension_monitor_init, except that there is only
* a single parameter used for naming the interface.
*
* This function is called when handling AST_CONTROL_CC frames.
* The device has reported that CC is possible, so we add it
* to the interface_tree.
*
* Note that it is not necessarily erroneous to add the same
* device to the tree twice. If the same device is called by
* two different extension during the same call, then
* that is a legitimate situation. Of course, I'm pretty sure
* the dialed_interfaces global datastore will not allow that
* to happen anyway.
*
* \param device_name The name of the device being added to the tree
* \param dialstring The dialstring used to dial the device being added
* \param parent_id The parent of this new tree node.
* \retval NULL Memory allocation failure
* \retval non-NULL The new ast_cc_interface created.
*/
static struct ast_cc_monitor *cc_device_monitor_init(const char * const device_name, const char * const dialstring, const struct cc_control_payload *cc_data, int core_id)
{
struct ast_cc_interface *cc_interface;
struct ast_cc_monitor *monitor;
size_t device_name_len = strlen(device_name);
int parent_id = cc_data->parent_interface_id;
if (!(cc_interface = ao2_t_alloc(sizeof(*cc_interface) + device_name_len, cc_interface_destroy,
"Allocating new ast_cc_interface"))) {
return NULL;
}
if (!(cc_interface->config_params = ast_cc_config_params_init())) {
cc_unref(cc_interface, "Failed to allocate config params, unref interface");
return NULL;
}
if (!(monitor = ao2_t_alloc(sizeof(*monitor), cc_monitor_destroy, "Allocating new ast_cc_monitor"))) {
cc_unref(cc_interface, "Failed to allocate monitor, unref interface");
return NULL;
}
if (!(monitor->dialstring = ast_strdup(dialstring))) {
cc_unref(monitor, "Failed to copy dialable name. Unref monitor");
cc_unref(cc_interface, "Failed to copy dialable name");
return NULL;
}
if (!(monitor->callbacks = find_monitor_callbacks(cc_data->monitor_type))) {
cc_unref(monitor, "Failed to find monitor callbacks. Unref monitor");
cc_unref(cc_interface, "Failed to find monitor callbacks");
return NULL;
}
strcpy(cc_interface->device_name, device_name);
monitor->id = ast_atomic_fetchadd_int(&dialed_cc_interface_counter, +1);
monitor->parent_id = parent_id;
monitor->core_id = core_id;
monitor->service_offered = cc_data->service;
monitor->private_data = cc_data->private_data;
cc_interface->monitor_type = cc_data->monitor_type;
cc_interface->monitor_class = AST_CC_DEVICE_MONITOR;
monitor->interface = cc_interface;
monitor->available_timer_id = -1;
ast_cc_copy_config_params(cc_interface->config_params, &cc_data->config_params);
ast_log_dynamic_level(cc_logger_level, "Core %d: Created a device cc interface for '%s' with id %d and parent %d\n",
monitor->core_id, cc_interface->device_name, monitor->id, monitor->parent_id);
return monitor;
}
/*!
* \details
* Unless we are ignoring CC for some reason, we will always
* call this function when we read an AST_CONTROL_CC frame
* from an outbound channel.
*
* This function will call cc_device_monitor_init to
* create the new cc_monitor for the device from which
* we read the frame. In addition, the new device will be added
* to the monitor tree on the dialed_cc_interfaces datastore
* on the inbound channel.
*
* If this is the first AST_CONTROL_CC frame that we have handled
* for this call, then we will also initialize the CC core for
* this call.
*/
void ast_handle_cc_control_frame(struct ast_channel *inbound, struct ast_channel *outbound, void *frame_data)
{
char *device_name;
char *dialstring;
struct ast_cc_monitor *monitor;
struct ast_datastore *cc_datastore;
struct dialed_cc_interfaces *cc_interfaces;
struct cc_control_payload *cc_data = frame_data;
struct cc_core_instance *core_instance;
device_name = cc_data->device_name;
dialstring = cc_data->dialstring;
ast_channel_lock(inbound);
if (!(cc_datastore = ast_channel_datastore_find(inbound, &dialed_cc_interfaces_info, NULL))) {
ast_log(LOG_WARNING, "Unable to retrieve CC datastore while processing CC frame from '%s'. CC services will be unavailable.\n", device_name);
ast_channel_unlock(inbound);
call_destructor_with_no_monitor(cc_data->monitor_type, cc_data->private_data);
return;
}
cc_interfaces = cc_datastore->data;
if (cc_interfaces->ignore) {
ast_channel_unlock(inbound);
call_destructor_with_no_monitor(cc_data->monitor_type, cc_data->private_data);
return;
}
if (!cc_interfaces->is_original_caller) {
/* If the is_original_caller is not set on the *inbound* channel, then
* it must be a local channel. As such, we do not want to create a core instance
* or an agent for the local channel. Instead, we want to pass this along to the
* other side of the local channel so that the original caller can benefit.
*/
ast_channel_unlock(inbound);
ast_indicate_data(inbound, AST_CONTROL_CC, cc_data, sizeof(*cc_data));
return;
}
core_instance = find_cc_core_instance(cc_interfaces->core_id);
if (!core_instance) {
core_instance = cc_core_init_instance(inbound, cc_interfaces->interface_tree,
cc_interfaces->core_id, cc_data);
if (!core_instance) {
cc_interfaces->ignore = 1;
ast_channel_unlock(inbound);
call_destructor_with_no_monitor(cc_data->monitor_type, cc_data->private_data);
return;
}
}
ast_channel_unlock(inbound);
/* Yeah this kind of sucks, but luckily most people
* aren't dialing thousands of interfaces on every call
*
* This traversal helps us to not create duplicate monitors in
* case a device queues multiple CC control frames.
*/
AST_LIST_LOCK(cc_interfaces->interface_tree);
AST_LIST_TRAVERSE(cc_interfaces->interface_tree, monitor, next) {
if (!strcmp(monitor->interface->device_name, device_name)) {
ast_log_dynamic_level(cc_logger_level, "Core %d: Device %s sent us multiple CC control frames. Ignoring those beyond the first.\n",
core_instance->core_id, device_name);
AST_LIST_UNLOCK(cc_interfaces->interface_tree);
cc_unref(core_instance, "Returning early from ast_handle_cc_control_frame. Unref core_instance");
call_destructor_with_no_monitor(cc_data->monitor_type, cc_data->private_data);
return;
}
}
AST_LIST_UNLOCK(cc_interfaces->interface_tree);
if (!(monitor = cc_device_monitor_init(device_name, dialstring, cc_data, core_instance->core_id))) {
ast_log(LOG_WARNING, "Unable to create CC device interface for '%s'. CC services will be unavailable on this interface.\n", device_name);
cc_unref(core_instance, "Returning early from ast_handle_cc_control_frame. Unref core_instance");
call_destructor_with_no_monitor(cc_data->monitor_type, cc_data->private_data);
return;
}
AST_LIST_LOCK(cc_interfaces->interface_tree);
cc_ref(monitor, "monitor tree's reference to the monitor");
AST_LIST_INSERT_TAIL(cc_interfaces->interface_tree, monitor, next);
AST_LIST_UNLOCK(cc_interfaces->interface_tree);
cc_extension_monitor_change_is_valid(core_instance, monitor->parent_id, monitor->interface->device_name, 0);
manager_event(EVENT_FLAG_CC, "CCAvailable",
"CoreID: %d\r\n"
"Callee: %s\r\n"
"Service: %s\r\n",
cc_interfaces->core_id, device_name, cc_service_to_string(cc_data->service)
);
cc_unref(core_instance, "Done with core_instance after handling CC control frame");
cc_unref(monitor, "Unref reference from allocating monitor");
}
int ast_cc_call_init(struct ast_channel *chan, int *ignore_cc)
{
/* There are three situations to deal with here:
*
* 1. The channel does not have a dialed_cc_interfaces datastore on
* it. This means that this is the first time that Dial has
* been called. We need to create/initialize the datastore.
*
* 2. The channel does have a cc_interface datastore on it and
* the "ignore" indicator is 0. This means that a Local channel
* was called by a "parent" dial. We can check the datastore's
* parent field to see who the root of this particular dial tree
* is.
*
* 3. The channel does have a cc_interface datastore on it and
* the "ignore" indicator is 1. This means that a second Dial call
* is being made from an extension. In this case, we do not
* want to make any additions/modifications to the datastore. We
* will instead set a flag to indicate that CCSS is completely
* disabled for this Dial attempt.
*/
struct ast_datastore *cc_interfaces_datastore;
struct dialed_cc_interfaces *interfaces;
struct ast_cc_monitor *monitor;
struct ast_cc_config_params *cc_params;
ast_channel_lock(chan);
cc_params = ast_channel_get_cc_config_params(chan);
if (!cc_params) {
ast_channel_unlock(chan);
return -1;
}
if (ast_get_cc_agent_policy(cc_params) == AST_CC_AGENT_NEVER) {
/* We can't offer CC to this caller anyway, so don't bother with CC on this call
*/
*ignore_cc = 1;
ast_channel_unlock(chan);
ast_log_dynamic_level(cc_logger_level, "Agent policy for %s is 'never'. CC not possible\n", chan->name);
return 0;
}
if (!(cc_interfaces_datastore = ast_channel_datastore_find(chan, &dialed_cc_interfaces_info, NULL))) {
/* Situation 1 has occurred */
ast_channel_unlock(chan);
return cc_interfaces_datastore_init(chan);
}
interfaces = cc_interfaces_datastore->data;
ast_channel_unlock(chan);
if (interfaces->ignore) {
/* Situation 3 has occurred */
*ignore_cc = 1;
ast_log_dynamic_level(cc_logger_level, "Datastore is present with ignore flag set. Ignoring CC offers on this call\n");
return 0;
}
/* Situation 2 has occurred */
if (!(monitor = cc_extension_monitor_init(S_OR(chan->macroexten, chan->exten),
S_OR(chan->macrocontext, chan->context), interfaces->dial_parent_id))) {
return -1;
}
monitor->core_id = interfaces->core_id;
AST_LIST_LOCK(interfaces->interface_tree);
cc_ref(monitor, "monitor tree's reference to the monitor");
AST_LIST_INSERT_TAIL(interfaces->interface_tree, monitor, next);
AST_LIST_UNLOCK(interfaces->interface_tree);
interfaces->dial_parent_id = monitor->id;
cc_unref(monitor, "Unref monitor's allocation reference");
return 0;
}
int ast_cc_request_is_within_limits(void)
{
return cc_request_count < global_cc_max_requests;
}
int ast_cc_get_current_core_id(struct ast_channel *chan)
{
struct ast_datastore *datastore;
struct dialed_cc_interfaces *cc_interfaces;
int core_id_return;
ast_channel_lock(chan);
if (!(datastore = ast_channel_datastore_find(chan, &dialed_cc_interfaces_info, NULL))) {
ast_channel_unlock(chan);
return -1;
}
cc_interfaces = datastore->data;
core_id_return = cc_interfaces->ignore ? -1 : cc_interfaces->core_id;
ast_channel_unlock(chan);
return core_id_return;
}
static long count_agents(const char * const caller, const int core_id_exception)
{
struct count_agents_cb_data data = {.core_id_exception = core_id_exception,};
ao2_t_callback_data(cc_core_instances, OBJ_NODATA, count_agents_cb, (char *)caller, &data, "Counting agents");
ast_log_dynamic_level(cc_logger_level, "Counted %d agents\n", data.count);
return data.count;
}
static void kill_duplicate_offers(char *caller)
{
unsigned long match_flags = MATCH_NO_REQUEST;
struct ao2_iterator *dups_iter;
/*
* Must remove the ref that was in cc_core_instances outside of
* the container lock to prevent deadlock.
*/
dups_iter = ao2_t_callback_data(cc_core_instances, OBJ_MULTIPLE | OBJ_UNLINK,
match_agent, caller, &match_flags, "Killing duplicate offers");
if (dups_iter) {
/* Now actually unref any duplicate offers by simply destroying the iterator. */
ao2_iterator_destroy(dups_iter);
}
}
static void check_callback_sanity(const struct ast_cc_agent_callbacks *callbacks)
{
ast_assert(callbacks->init != NULL);
ast_assert(callbacks->start_offer_timer != NULL);
ast_assert(callbacks->stop_offer_timer != NULL);
ast_assert(callbacks->respond != NULL);
ast_assert(callbacks->status_request != NULL);
ast_assert(callbacks->start_monitoring != NULL);
ast_assert(callbacks->callee_available != NULL);
ast_assert(callbacks->destructor != NULL);
}
static void agent_destroy(void *data)
{
struct ast_cc_agent *agent = data;
if (agent->callbacks) {
agent->callbacks->destructor(agent);
}
ast_cc_config_params_destroy(agent->cc_params);
}
static struct ast_cc_agent *cc_agent_init(struct ast_channel *caller_chan,
const char * const caller_name, const int core_id,
struct cc_monitor_tree *interface_tree)
{
struct ast_cc_agent *agent;
struct ast_cc_config_params *cc_params;
if (!(agent = ao2_t_alloc(sizeof(*agent) + strlen(caller_name), agent_destroy,
"Allocating new ast_cc_agent"))) {
return NULL;
}
agent->core_id = core_id;
strcpy(agent->device_name, caller_name);
cc_params = ast_channel_get_cc_config_params(caller_chan);
if (!cc_params) {
cc_unref(agent, "Could not get channel config params.");
return NULL;
}
if (!(agent->cc_params = ast_cc_config_params_init())) {
cc_unref(agent, "Could not init agent config params.");
return NULL;
}
ast_cc_copy_config_params(agent->cc_params, cc_params);
if (!(agent->callbacks = find_agent_callbacks(caller_chan))) {
cc_unref(agent, "Could not find agent callbacks.");
return NULL;
}
check_callback_sanity(agent->callbacks);
if (agent->callbacks->init(agent, caller_chan)) {
cc_unref(agent, "Agent init callback failed.");
return NULL;
}
ast_log_dynamic_level(cc_logger_level, "Core %d: Created an agent for caller %s\n",
agent->core_id, agent->device_name);
return agent;
}
/* Generic agent callbacks */
static int cc_generic_agent_init(struct ast_cc_agent *agent, struct ast_channel *chan);
static int cc_generic_agent_start_offer_timer(struct ast_cc_agent *agent);
static int cc_generic_agent_stop_offer_timer(struct ast_cc_agent *agent);
static void cc_generic_agent_respond(struct ast_cc_agent *agent, enum ast_cc_agent_response_reason reason);
static int cc_generic_agent_status_request(struct ast_cc_agent *agent);
static int cc_generic_agent_stop_ringing(struct ast_cc_agent *agent);
static int cc_generic_agent_start_monitoring(struct ast_cc_agent *agent);
static int cc_generic_agent_recall(struct ast_cc_agent *agent);
static void cc_generic_agent_destructor(struct ast_cc_agent *agent);
static struct ast_cc_agent_callbacks generic_agent_callbacks = {
.type = "generic",
.init = cc_generic_agent_init,
.start_offer_timer = cc_generic_agent_start_offer_timer,
.stop_offer_timer = cc_generic_agent_stop_offer_timer,
.respond = cc_generic_agent_respond,
.status_request = cc_generic_agent_status_request,
.stop_ringing = cc_generic_agent_stop_ringing,
.start_monitoring = cc_generic_agent_start_monitoring,
.callee_available = cc_generic_agent_recall,
.destructor = cc_generic_agent_destructor,
};
struct cc_generic_agent_pvt {
/*!
* Subscription to device state
*
* Used in the CC_CALLER_BUSY state. The
* generic agent will subscribe to the
* device state of the caller in order to
* determine when we may move on
*/
struct ast_event_sub *sub;
/*!
* Scheduler id of offer timer.
*/
int offer_timer_id;
/*!
* Caller ID number
*
* When we re-call the caller, we need
* to provide this information to
* ast_request_and_dial so that the
* information will be present in the
* call to the callee
*/
char cid_num[AST_CHANNEL_NAME];
/*!
* Caller ID name
*
* See the description of cid_num.
* The same applies here, except this
* is the caller's name.
*/
char cid_name[AST_CHANNEL_NAME];
/*!
* Extension dialed
*
* The original extension dialed. This is used
* so that when performing a recall, we can
* call the proper extension.
*/
char exten[AST_CHANNEL_NAME];
/*!
* Context dialed
*
* The original context dialed. This is used
* so that when performaing a recall, we can
* call into the proper context
*/
char context[AST_CHANNEL_NAME];
};
static int cc_generic_agent_init(struct ast_cc_agent *agent, struct ast_channel *chan)
{
struct cc_generic_agent_pvt *generic_pvt = ast_calloc(1, sizeof(*generic_pvt));
if (!generic_pvt) {
return -1;
}
generic_pvt->offer_timer_id = -1;
if (chan->caller.id.number.valid && chan->caller.id.number.str) {
ast_copy_string(generic_pvt->cid_num, chan->caller.id.number.str, sizeof(generic_pvt->cid_num));
}
if (chan->caller.id.name.valid && chan->caller.id.name.str) {
ast_copy_string(generic_pvt->cid_name, chan->caller.id.name.str, sizeof(generic_pvt->cid_name));
}
ast_copy_string(generic_pvt->exten, S_OR(chan->macroexten, chan->exten), sizeof(generic_pvt->exten));
ast_copy_string(generic_pvt->context, S_OR(chan->macrocontext, chan->context), sizeof(generic_pvt->context));
agent->private_data = generic_pvt;
ast_set_flag(agent, AST_CC_AGENT_SKIP_OFFER);
return 0;
}
static int offer_timer_expire(const void *data)
{
struct ast_cc_agent *agent = (struct ast_cc_agent *) data;
struct cc_generic_agent_pvt *agent_pvt = agent->private_data;
ast_log_dynamic_level(cc_logger_level, "Core %d: Queuing change request because offer timer has expired.\n",
agent->core_id);
agent_pvt->offer_timer_id = -1;
ast_cc_failed(agent->core_id, "Generic agent %s offer timer expired", agent->device_name);
cc_unref(agent, "Remove scheduler's reference to the agent");
return 0;
}
static int cc_generic_agent_start_offer_timer(struct ast_cc_agent *agent)
{
int when;
int sched_id;
struct cc_generic_agent_pvt *generic_pvt = agent->private_data;
ast_assert(cc_sched_context != NULL);
ast_assert(agent->cc_params != NULL);
when = ast_get_cc_offer_timer(agent->cc_params) * 1000;
ast_log_dynamic_level(cc_logger_level, "Core %d: About to schedule offer timer expiration for %d ms\n",
agent->core_id, when);
if ((sched_id = ast_sched_add(cc_sched_context, when, offer_timer_expire, cc_ref(agent, "Give scheduler an agent ref"))) == -1) {
return -1;
}
generic_pvt->offer_timer_id = sched_id;
return 0;
}
static int cc_generic_agent_stop_offer_timer(struct ast_cc_agent *agent)
{
struct cc_generic_agent_pvt *generic_pvt = agent->private_data;
if (generic_pvt->offer_timer_id != -1) {
if (!ast_sched_del(cc_sched_context, generic_pvt->offer_timer_id)) {
cc_unref(agent, "Remove scheduler's reference to the agent");
}
generic_pvt->offer_timer_id = -1;
}
return 0;
}
static void cc_generic_agent_respond(struct ast_cc_agent *agent, enum ast_cc_agent_response_reason reason)
{
/* The generic agent doesn't have to do anything special to
* acknowledge a CC request. Just return.
*/
return;
}
static int cc_generic_agent_status_request(struct ast_cc_agent *agent)
{
ast_cc_agent_status_response(agent->core_id, ast_device_state(agent->device_name));
return 0;
}
static int cc_generic_agent_stop_ringing(struct ast_cc_agent *agent)
{
struct ast_channel *recall_chan = ast_channel_get_by_name_prefix(agent->device_name, strlen(agent->device_name));
if (!recall_chan) {
return 0;
}
ast_softhangup(recall_chan, AST_SOFTHANGUP_EXPLICIT);
return 0;
}
static int generic_agent_devstate_unsubscribe(void *data)
{
struct ast_cc_agent *agent = data;
struct cc_generic_agent_pvt *generic_pvt = agent->private_data;
if (generic_pvt->sub != NULL) {
generic_pvt->sub = ast_event_unsubscribe(generic_pvt->sub);
}
cc_unref(agent, "Done unsubscribing from devstate");
return 0;
}
static void generic_agent_devstate_cb(const struct ast_event *event, void *userdata)
{
struct ast_cc_agent *agent = userdata;
enum ast_device_state new_state;
new_state = ast_event_get_ie_uint(event, AST_EVENT_IE_STATE);
if (!cc_generic_is_device_available(new_state)) {
/* Not interested in this new state of the device. It is still busy. */
return;
}
/* We can't unsubscribe from device state events here because it causes a deadlock */
if (ast_taskprocessor_push(cc_core_taskprocessor, generic_agent_devstate_unsubscribe,
cc_ref(agent, "ref agent for device state unsubscription"))) {
cc_unref(agent, "Unref agent unsubscribing from devstate failed");
}
ast_cc_agent_caller_available(agent->core_id, "%s is no longer busy", agent->device_name);
}
static int cc_generic_agent_start_monitoring(struct ast_cc_agent *agent)
{
struct cc_generic_agent_pvt *generic_pvt = agent->private_data;
struct ast_str *str = ast_str_alloca(128);
ast_assert(generic_pvt->sub == NULL);
ast_str_set(&str, 0, "Agent monitoring %s device state since it is busy\n",
agent->device_name);
if (!(generic_pvt->sub = ast_event_subscribe(AST_EVENT_DEVICE_STATE,
generic_agent_devstate_cb, ast_str_buffer(str), agent,
AST_EVENT_IE_DEVICE, AST_EVENT_IE_PLTYPE_STR, agent->device_name,
AST_EVENT_IE_STATE, AST_EVENT_IE_PLTYPE_EXISTS,
AST_EVENT_IE_END))) {
return -1;
}
return 0;
}
static void *generic_recall(void *data)
{
struct ast_cc_agent *agent = data;
struct cc_generic_agent_pvt *generic_pvt = agent->private_data;
const char *interface = S_OR(ast_get_cc_agent_dialstring(agent->cc_params), ast_strdupa(agent->device_name));
const char *tech;
char *target;
int reason;
struct ast_channel *chan;
const char *callback_macro = ast_get_cc_callback_macro(agent->cc_params);
unsigned int recall_timer = ast_get_cc_recall_timer(agent->cc_params) * 1000;
struct ast_format tmp_fmt;
struct ast_format_cap *tmp_cap = ast_format_cap_alloc_nolock();
if (!tmp_cap) {
return NULL;
}
tech = interface;
if ((target = strchr(interface, '/'))) {
*target++ = '\0';
}
ast_format_cap_add(tmp_cap, ast_format_set(&tmp_fmt, AST_FORMAT_SLINEAR, 0));
if (!(chan = ast_request_and_dial(tech, tmp_cap, NULL, target, recall_timer, &reason, generic_pvt->cid_num, generic_pvt->cid_name))) {
/* Hmm, no channel. Sucks for you, bud.
*/
ast_log_dynamic_level(cc_logger_level, "Core %d: Failed to call back %s for reason %d\n",
agent->core_id, agent->device_name, reason);
ast_cc_failed(agent->core_id, "Failed to call back device %s/%s", tech, target);
ast_format_cap_destroy(tmp_cap);
return NULL;
}
ast_format_cap_destroy(tmp_cap);
/* We have a channel. It's time now to set up the datastore of recalled CC interfaces.
* This will be a common task for all recall functions. If it were possible, I'd have
* the core do it automatically, but alas I cannot. Instead, I will provide a public
* function to do so.
*/
ast_setup_cc_recall_datastore(chan, agent->core_id);
ast_cc_agent_set_interfaces_chanvar(chan);
ast_copy_string(chan->exten, generic_pvt->exten, sizeof(chan->exten));
ast_copy_string(chan->context, generic_pvt->context, sizeof(chan->context));
chan->priority = 1;
pbx_builtin_setvar_helper(chan, "CC_EXTEN", generic_pvt->exten);
pbx_builtin_setvar_helper(chan, "CC_CONTEXT", generic_pvt->context);
if (!ast_strlen_zero(callback_macro)) {
ast_log_dynamic_level(cc_logger_level, "Core %d: There's a callback macro configured for agent %s\n",
agent->core_id, agent->device_name);
if (ast_app_run_macro(NULL, chan, callback_macro, NULL)) {
ast_cc_failed(agent->core_id, "Callback macro to %s failed. Maybe a hangup?", agent->device_name);
ast_hangup(chan);
return NULL;
}
}
ast_cc_agent_recalling(agent->core_id, "Generic agent %s is recalling", agent->device_name);
ast_pbx_start(chan);
return NULL;
}
static int cc_generic_agent_recall(struct ast_cc_agent *agent)
{
pthread_t clotho;
enum ast_device_state current_state = ast_device_state(agent->device_name);
if (!cc_generic_is_device_available(current_state)) {
/* We can't try to contact the device right now because he's not available
* Let the core know he's busy.
*/
ast_cc_agent_caller_busy(agent->core_id, "Generic agent caller %s is busy", agent->device_name);
return 0;
}
ast_pthread_create_detached_background(&clotho, NULL, generic_recall, agent);
return 0;
}
static void cc_generic_agent_destructor(struct ast_cc_agent *agent)
{
struct cc_generic_agent_pvt *agent_pvt = agent->private_data;
if (!agent_pvt) {
/* The agent constructor probably failed. */
return;
}
cc_generic_agent_stop_offer_timer(agent);
if (agent_pvt->sub) {
agent_pvt->sub = ast_event_unsubscribe(agent_pvt->sub);
}
ast_free(agent_pvt);
}
static void cc_core_instance_destructor(void *data)
{
struct cc_core_instance *core_instance = data;
ast_log_dynamic_level(cc_logger_level, "Core %d: Destroying core instance\n", core_instance->core_id);
if (core_instance->agent) {
cc_unref(core_instance->agent, "Core instance is done with the agent now");
}
if (core_instance->monitors) {
core_instance->monitors = cc_unref(core_instance->monitors, "Core instance is done with interface list");
}
}
static struct cc_core_instance *cc_core_init_instance(struct ast_channel *caller_chan,
struct cc_monitor_tree *called_tree, const int core_id, struct cc_control_payload *cc_data)
{
char caller[AST_CHANNEL_NAME];
struct cc_core_instance *core_instance;
struct ast_cc_config_params *cc_params;
long agent_count;
int recall_core_id;
ast_channel_get_device_name(caller_chan, caller, sizeof(caller));
cc_params = ast_channel_get_cc_config_params(caller_chan);
if (!cc_params) {
ast_log_dynamic_level(cc_logger_level, "Could not get CC parameters for %s\n",
caller);
return NULL;
}
/* First, we need to kill off other pending CC offers from caller. If the caller is going
* to request a CC service, it may only be for the latest call he made.
*/
if (ast_get_cc_agent_policy(cc_params) == AST_CC_AGENT_GENERIC) {
kill_duplicate_offers(caller);
}
ast_cc_is_recall(caller_chan, &recall_core_id, NULL);
agent_count = count_agents(caller, recall_core_id);
if (agent_count >= ast_get_cc_max_agents(cc_params)) {
ast_log_dynamic_level(cc_logger_level, "Caller %s already has the maximum number of agents configured\n", caller);
return NULL;
}
/* Generic agents can only have a single outstanding CC request per caller. */
if (agent_count > 0 && ast_get_cc_agent_policy(cc_params) == AST_CC_AGENT_GENERIC) {
ast_log_dynamic_level(cc_logger_level, "Generic agents can only have a single outstanding request\n");
return NULL;
}
/* Next, we need to create the core instance for this call */
if (!(core_instance = ao2_t_alloc(sizeof(*core_instance), cc_core_instance_destructor, "Creating core instance for CC"))) {
return NULL;
}
core_instance->core_id = core_id;
if (!(core_instance->agent = cc_agent_init(caller_chan, caller, core_instance->core_id, called_tree))) {
cc_unref(core_instance, "Couldn't allocate agent, unref core_instance");
return NULL;
}
core_instance->monitors = cc_ref(called_tree, "Core instance getting ref to monitor tree");
ao2_t_link(cc_core_instances, core_instance, "Link core instance into container");
return core_instance;
}
struct cc_state_change_args {
struct cc_core_instance *core_instance;/*!< Holds reference to core instance. */
enum cc_state state;
int core_id;
char debug[1];
};
static int is_state_change_valid(enum cc_state current_state, const enum cc_state new_state, struct ast_cc_agent *agent)
{
int is_valid = 0;
switch (new_state) {
case CC_AVAILABLE:
ast_log_dynamic_level(cc_logger_level, "Core %d: Asked to change to state %d? That should never happen.\n",
agent->core_id, new_state);
break;
case CC_CALLER_OFFERED:
if (current_state == CC_AVAILABLE) {
is_valid = 1;
}
break;
case CC_CALLER_REQUESTED:
if (current_state == CC_CALLER_OFFERED ||
(current_state == CC_AVAILABLE && ast_test_flag(agent, AST_CC_AGENT_SKIP_OFFER))) {
is_valid = 1;
}
break;
case CC_ACTIVE:
if (current_state == CC_CALLER_REQUESTED || current_state == CC_CALLER_BUSY) {
is_valid = 1;
}
break;
case CC_CALLEE_READY:
if (current_state == CC_ACTIVE) {
is_valid = 1;
}
break;
case CC_CALLER_BUSY:
if (current_state == CC_CALLEE_READY) {
is_valid = 1;
}
break;
case CC_RECALLING:
if (current_state == CC_CALLEE_READY) {
is_valid = 1;
}
break;
case CC_COMPLETE:
if (current_state == CC_RECALLING) {
is_valid = 1;
}
break;
case CC_FAILED:
is_valid = 1;
break;
default:
ast_log_dynamic_level(cc_logger_level, "Core %d: Asked to change to unknown state %d\n",
agent->core_id, new_state);
break;
}
return is_valid;
}
static int cc_available(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state)
{
/* This should never happen... */
ast_log(LOG_WARNING, "Someone requested to change to CC_AVAILABLE? Ignoring.\n");
return -1;
}
static int cc_caller_offered(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state)
{
if (core_instance->agent->callbacks->start_offer_timer(core_instance->agent)) {
ast_cc_failed(core_instance->core_id, "Failed to start the offer timer for %s\n",
core_instance->agent->device_name);
return -1;
}
manager_event(EVENT_FLAG_CC, "CCOfferTimerStart",
"CoreID: %d\r\n"
"Caller: %s\r\n"
"Expires: %u\r\n",
core_instance->core_id, core_instance->agent->device_name, core_instance->agent->cc_params->cc_offer_timer);
ast_log_dynamic_level(cc_logger_level, "Core %d: Started the offer timer for the agent %s!\n",
core_instance->core_id, core_instance->agent->device_name);
return 0;
}
/*!
* \brief check if the core instance has any device monitors
*
* In any case where we end up removing a device monitor from the
* list of device monitors, it is important to see what the state
* of the list is afterwards. If we find that we only have extension
* monitors left, then no devices are actually being monitored.
* In such a case, we need to declare that CC has failed for this
* call. This function helps those cases to determine if they should
* declare failure.
*
* \param core_instance The core instance we are checking for the existence
* of device monitors
* \retval 0 No device monitors exist on this core_instance
* \retval 1 There is still at least 1 device monitor remaining
*/
static int has_device_monitors(struct cc_core_instance *core_instance)
{
struct ast_cc_monitor *iter;
int res = 0;
AST_LIST_TRAVERSE(core_instance->monitors, iter, next) {
if (iter->interface->monitor_class == AST_CC_DEVICE_MONITOR) {
res = 1;
break;
}
}
return res;
}
static void request_cc(struct cc_core_instance *core_instance)
{
struct ast_cc_monitor *monitor_iter;
AST_LIST_LOCK(core_instance->monitors);
AST_LIST_TRAVERSE_SAFE_BEGIN(core_instance->monitors, monitor_iter, next) {
if (monitor_iter->interface->monitor_class == AST_CC_DEVICE_MONITOR) {
if (monitor_iter->callbacks->request_cc(monitor_iter, &monitor_iter->available_timer_id)) {
AST_LIST_REMOVE_CURRENT(next);
cc_extension_monitor_change_is_valid(core_instance, monitor_iter->parent_id,
monitor_iter->interface->device_name, 1);
cc_unref(monitor_iter, "request_cc failed. Unref list's reference to monitor");
} else {
manager_event(EVENT_FLAG_CC, "CCRequested",
"CoreID: %d\r\n"
"Caller: %s\r\n"
"Callee: %s\r\n",
core_instance->core_id, core_instance->agent->device_name, monitor_iter->interface->device_name);
}
}
}
AST_LIST_TRAVERSE_SAFE_END;
if (!has_device_monitors(core_instance)) {
ast_cc_failed(core_instance->core_id, "All device monitors failed to request CC");
}
AST_LIST_UNLOCK(core_instance->monitors);
}
static int cc_caller_requested(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state)
{
if (!ast_cc_request_is_within_limits()) {
ast_log(LOG_WARNING, "Cannot request CC since there is no more room for requests\n");
core_instance->agent->callbacks->respond(core_instance->agent,
AST_CC_AGENT_RESPONSE_FAILURE_TOO_MANY);
ast_cc_failed(core_instance->core_id, "Too many requests in the system");
return -1;
}
core_instance->agent->callbacks->stop_offer_timer(core_instance->agent);
request_cc(core_instance);
return 0;
}
static void unsuspend(struct cc_core_instance *core_instance)
{
struct ast_cc_monitor *monitor_iter;
AST_LIST_LOCK(core_instance->monitors);
AST_LIST_TRAVERSE_SAFE_BEGIN(core_instance->monitors, monitor_iter, next) {
if (monitor_iter->interface->monitor_class == AST_CC_DEVICE_MONITOR) {
if (monitor_iter->callbacks->unsuspend(monitor_iter)) {
AST_LIST_REMOVE_CURRENT(next);
cc_extension_monitor_change_is_valid(core_instance, monitor_iter->parent_id,
monitor_iter->interface->device_name, 1);
cc_unref(monitor_iter, "unsuspend failed. Unref list's reference to monitor");
}
}
}
AST_LIST_TRAVERSE_SAFE_END;
if (!has_device_monitors(core_instance)) {
ast_cc_failed(core_instance->core_id, "All device monitors failed to unsuspend CC");
}
AST_LIST_UNLOCK(core_instance->monitors);
}
static int cc_active(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state)
{
/* Either
* 1. Callee accepted CC request, call agent's ack callback.
* 2. Caller became available, call agent's stop_monitoring callback and
* call monitor's unsuspend callback.
*/
if (previous_state == CC_CALLER_REQUESTED) {
core_instance->agent->callbacks->respond(core_instance->agent,
AST_CC_AGENT_RESPONSE_SUCCESS);
manager_event(EVENT_FLAG_CC, "CCRequestAcknowledged",
"CoreID: %d\r\n"
"Caller: %s\r\n",
core_instance->core_id, core_instance->agent->device_name);
} else if (previous_state == CC_CALLER_BUSY) {
manager_event(EVENT_FLAG_CC, "CCCallerStopMonitoring",
"CoreID: %d\r\n"
"Caller: %s\r\n",
core_instance->core_id, core_instance->agent->device_name);
unsuspend(core_instance);
}
/* Not possible for previous_state to be anything else due to the is_state_change_valid check at the beginning */
return 0;
}
static int cc_callee_ready(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state)
{
core_instance->agent->callbacks->callee_available(core_instance->agent);
return 0;
}
static void suspend(struct cc_core_instance *core_instance)
{
struct ast_cc_monitor *monitor_iter;
AST_LIST_LOCK(core_instance->monitors);
AST_LIST_TRAVERSE_SAFE_BEGIN(core_instance->monitors, monitor_iter, next) {
if (monitor_iter->interface->monitor_class == AST_CC_DEVICE_MONITOR) {
if (monitor_iter->callbacks->suspend(monitor_iter)) {
AST_LIST_REMOVE_CURRENT(next);
cc_extension_monitor_change_is_valid(core_instance, monitor_iter->parent_id,
monitor_iter->interface->device_name, 1);
cc_unref(monitor_iter, "suspend failed. Unref list's reference to monitor");
}
}
}
AST_LIST_TRAVERSE_SAFE_END;
if (!has_device_monitors(core_instance)) {
ast_cc_failed(core_instance->core_id, "All device monitors failed to suspend CC");
}
AST_LIST_UNLOCK(core_instance->monitors);
}
static int cc_caller_busy(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state)
{
/* Callee was available, but caller was busy, call agent's begin_monitoring callback
* and call monitor's suspend callback.
*/
suspend(core_instance);
core_instance->agent->callbacks->start_monitoring(core_instance->agent);
manager_event(EVENT_FLAG_CC, "CCCallerStartMonitoring",
"CoreID: %d\r\n"
"Caller: %s\r\n",
core_instance->core_id, core_instance->agent->device_name);
return 0;
}
static void cancel_available_timer(struct cc_core_instance *core_instance)
{
struct ast_cc_monitor *monitor_iter;
AST_LIST_LOCK(core_instance->monitors);
AST_LIST_TRAVERSE_SAFE_BEGIN(core_instance->monitors, monitor_iter, next) {
if (monitor_iter->interface->monitor_class == AST_CC_DEVICE_MONITOR) {
if (monitor_iter->callbacks->cancel_available_timer(monitor_iter, &monitor_iter->available_timer_id)) {
AST_LIST_REMOVE_CURRENT(next);
cc_extension_monitor_change_is_valid(core_instance, monitor_iter->parent_id,
monitor_iter->interface->device_name, 1);
cc_unref(monitor_iter, "cancel_available_timer failed. Unref list's reference to monitor");
}
}
}
AST_LIST_TRAVERSE_SAFE_END;
if (!has_device_monitors(core_instance)) {
ast_cc_failed(core_instance->core_id, "All device monitors failed to cancel their available timers");
}
AST_LIST_UNLOCK(core_instance->monitors);
}
static int cc_recalling(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state)
{
/* Both caller and callee are available, call agent's recall callback
*/
cancel_available_timer(core_instance);
manager_event(EVENT_FLAG_CC, "CCCallerRecalling",
"CoreID: %d\r\n"
"Caller: %s\r\n",
core_instance->core_id, core_instance->agent->device_name);
return 0;
}
static int cc_complete(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state)
{
/* Recall has made progress, call agent and monitor destructor functions
*/
manager_event(EVENT_FLAG_CC, "CCRecallComplete",
"CoreID: %d\r\n"
"Caller: %s\r\n",
core_instance->core_id, core_instance->agent->device_name);
ao2_t_unlink(cc_core_instances, core_instance, "Unlink core instance since CC recall has completed");
return 0;
}
static int cc_failed(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state)
{
manager_event(EVENT_FLAG_CC, "CCFailure",
"CoreID: %d\r\n"
"Caller: %s\r\n"
"Reason: %s\r\n",
core_instance->core_id, core_instance->agent->device_name, args->debug);
ao2_t_unlink(cc_core_instances, core_instance, "Unlink core instance since CC failed");
return 0;
}
static int (* const state_change_funcs [])(struct cc_core_instance *, struct cc_state_change_args *, enum cc_state previous_state) = {
[CC_AVAILABLE] = cc_available,
[CC_CALLER_OFFERED] = cc_caller_offered,
[CC_CALLER_REQUESTED] = cc_caller_requested,
[CC_ACTIVE] = cc_active,
[CC_CALLEE_READY] = cc_callee_ready,
[CC_CALLER_BUSY] = cc_caller_busy,
[CC_RECALLING] = cc_recalling,
[CC_COMPLETE] = cc_complete,
[CC_FAILED] = cc_failed,
};
static int cc_do_state_change(void *datap)
{
struct cc_state_change_args *args = datap;
struct cc_core_instance *core_instance;
enum cc_state previous_state;
int res;
ast_log_dynamic_level(cc_logger_level, "Core %d: State change to %d requested. Reason: %s\n",
args->core_id, args->state, args->debug);
core_instance = args->core_instance;
if (!is_state_change_valid(core_instance->current_state, args->state, core_instance->agent)) {
ast_log_dynamic_level(cc_logger_level, "Core %d: Invalid state change requested. Cannot go from %s to %s\n",
args->core_id, cc_state_to_string(core_instance->current_state), cc_state_to_string(args->state));
if (args->state == CC_CALLER_REQUESTED) {
/*
* For out-of-order requests, we need to let the requester know that
* we can't handle the request now.
*/
core_instance->agent->callbacks->respond(core_instance->agent,
AST_CC_AGENT_RESPONSE_FAILURE_INVALID);
}
ast_free(args);
cc_unref(core_instance, "Unref core instance from when it was found earlier");
return -1;
}
/* We can change to the new state now. */
previous_state = core_instance->current_state;
core_instance->current_state = args->state;
res = state_change_funcs[core_instance->current_state](core_instance, args, previous_state);
/* If state change successful then notify any device state watchers of the change */
if (!res && !strcmp(core_instance->agent->callbacks->type, "generic")) {
ccss_notify_device_state_change(core_instance->agent->device_name, core_instance->current_state);
}
ast_free(args);
cc_unref(core_instance, "Unref since state change has completed"); /* From ao2_find */
return res;
}
static int cc_request_state_change(enum cc_state state, const int core_id, const char *debug, va_list ap)
{
int res;
int debuglen;
char dummy[1];
va_list aq;
struct cc_core_instance *core_instance;
struct cc_state_change_args *args;
/* This initial call to vsnprintf is simply to find what the
* size of the string needs to be
*/
va_copy(aq, ap);
/* We add 1 to the result since vsnprintf's return does not
* include the terminating null byte
*/
debuglen = vsnprintf(dummy, sizeof(dummy), debug, aq) + 1;
va_end(aq);
if (!(args = ast_calloc(1, sizeof(*args) + debuglen))) {
return -1;
}
core_instance = find_cc_core_instance(core_id);
if (!core_instance) {
ast_log_dynamic_level(cc_logger_level, "Core %d: Unable to find core instance.\n",
core_id);
ast_free(args);
return -1;
}
args->core_instance = core_instance;
args->state = state;
args->core_id = core_id;
vsnprintf(args->debug, debuglen, debug, ap);
res = ast_taskprocessor_push(cc_core_taskprocessor, cc_do_state_change, args);
if (res) {
cc_unref(core_instance, "Unref core instance. ast_taskprocessor_push failed");
ast_free(args);
}
return res;
}
struct cc_recall_ds_data {
int core_id;
char ignore;
char nested;
struct cc_monitor_tree *interface_tree;
};
static void *cc_recall_ds_duplicate(void *data)
{
struct cc_recall_ds_data *old_data = data;
struct cc_recall_ds_data *new_data = ast_calloc(1, sizeof(*new_data));
if (!new_data) {
return NULL;
}
new_data->interface_tree = cc_ref(old_data->interface_tree, "Bump refcount of monitor tree for recall datastore duplicate");
new_data->core_id = old_data->core_id;
new_data->nested = 1;
return new_data;
}
static void cc_recall_ds_destroy(void *data)
{
struct cc_recall_ds_data *recall_data = data;
recall_data->interface_tree = cc_unref(recall_data->interface_tree, "Unref recall monitor tree");
ast_free(recall_data);
}
static struct ast_datastore_info recall_ds_info = {
.type = "cc_recall",
.duplicate = cc_recall_ds_duplicate,
.destroy = cc_recall_ds_destroy,
};
int ast_setup_cc_recall_datastore(struct ast_channel *chan, const int core_id)
{
struct ast_datastore *recall_datastore = ast_datastore_alloc(&recall_ds_info, NULL);
struct cc_recall_ds_data *recall_data;
struct cc_core_instance *core_instance;
if (!recall_datastore) {
return -1;
}
if (!(recall_data = ast_calloc(1, sizeof(*recall_data)))) {
ast_datastore_free(recall_datastore);
return -1;
}
if (!(core_instance = find_cc_core_instance(core_id))) {
ast_free(recall_data);
ast_datastore_free(recall_datastore);
return -1;
}
recall_data->interface_tree = cc_ref(core_instance->monitors,
"Bump refcount for monitor tree for recall datastore");
recall_data->core_id = core_id;
recall_datastore->data = recall_data;
recall_datastore->inheritance = DATASTORE_INHERIT_FOREVER;
ast_channel_lock(chan);
ast_channel_datastore_add(chan, recall_datastore);
ast_channel_unlock(chan);
cc_unref(core_instance, "Recall datastore set up. No need for core_instance ref");
return 0;
}
int ast_cc_is_recall(struct ast_channel *chan, int *core_id, const char * const monitor_type)
{
struct ast_datastore *recall_datastore;
struct cc_recall_ds_data *recall_data;
struct cc_monitor_tree *interface_tree;
char device_name[AST_CHANNEL_NAME];
struct ast_cc_monitor *device_monitor;
int core_id_candidate;
ast_assert(core_id != NULL);
*core_id = -1;
ast_channel_lock(chan);
if (!(recall_datastore = ast_channel_datastore_find(chan, &recall_ds_info, NULL))) {
/* Obviously not a recall if the datastore isn't present */
ast_channel_unlock(chan);
return 0;
}
recall_data = recall_datastore->data;
if (recall_data->ignore) {
/* Though this is a recall, the call to this particular interface is not part of the
* recall either because this is a call forward or because this is not the first
* invocation of Dial during this call
*/
ast_channel_unlock(chan);
return 0;
}
if (!recall_data->nested) {
/* If the nested flag is not set, then this means that
* the channel passed to this function is the caller making
* the recall. This means that we shouldn't look through
* the monitor tree for the channel because it shouldn't be
* there. However, this is a recall though, so return true.
*/
*core_id = recall_data->core_id;
ast_channel_unlock(chan);
return 1;
}
if (ast_strlen_zero(monitor_type)) {
/* If someone passed a NULL or empty monitor type, then it is clear
* the channel they passed in was an incoming channel, and so searching
* the list of dialed interfaces is not going to be helpful. Just return
* false immediately.
*/
ast_channel_unlock(chan);
return 0;
}
interface_tree = recall_data->interface_tree;
ast_channel_get_device_name(chan, device_name, sizeof(device_name));
/* We grab the value of the recall_data->core_id so that we
* can unlock the channel before we start looking through the
* interface list. That way we don't have to worry about a possible
* clash between the channel lock and the monitor tree lock.
*/
core_id_candidate = recall_data->core_id;
ast_channel_unlock(chan);
/*
* Now we need to find out if the channel device name
* is in the list of interfaces in the called tree.
*/
AST_LIST_LOCK(interface_tree);
AST_LIST_TRAVERSE(interface_tree, device_monitor, next) {
if (!strcmp(device_monitor->interface->device_name, device_name) &&
!strcmp(device_monitor->interface->monitor_type, monitor_type)) {
/* BOOM! Device is in the tree! We have a winner! */
*core_id = core_id_candidate;
AST_LIST_UNLOCK(interface_tree);
return 1;
}
}
AST_LIST_UNLOCK(interface_tree);
return 0;
}
struct ast_cc_monitor *ast_cc_get_monitor_by_recall_core_id(const int core_id, const char * const device_name)
{
struct cc_core_instance *core_instance = find_cc_core_instance(core_id);
struct ast_cc_monitor *monitor_iter;
if (!core_instance) {
return NULL;
}
AST_LIST_LOCK(core_instance->monitors);
AST_LIST_TRAVERSE(core_instance->monitors, monitor_iter, next) {
if (!strcmp(monitor_iter->interface->device_name, device_name)) {
/* Found a monitor. */
cc_ref(monitor_iter, "Hand the requester of the monitor a reference");
break;
}
}
AST_LIST_UNLOCK(core_instance->monitors);
cc_unref(core_instance, "Done with core instance ref in ast_cc_get_monitor_by_recall_core_id");
return monitor_iter;
}
/*!
* \internal
* \brief uniquely append a dialstring to our CC_INTERFACES chanvar string.
*
* We will only append a string if it has not already appeared in our channel
* variable earlier. We ensure that we don't erroneously match substrings by
* adding an ampersand to the end of our potential dialstring and searching for
* it plus the ampersand in our variable.
*
* It's important to note that once we have built the full CC_INTERFACES string,
* there will be an extra ampersand at the end which must be stripped off by
* the caller of this function.
*
* \param str An ast_str holding what we will add to CC_INTERFACES
* \param dialstring A new dialstring to add
* \retval void
*/
static void cc_unique_append(struct ast_str *str, const char *dialstring)
{
char dialstring_search[AST_CHANNEL_NAME];
if (ast_strlen_zero(dialstring)) {
/* No dialstring to append. */
return;
}
snprintf(dialstring_search, sizeof(dialstring_search), "%s%c", dialstring, '&');
if (strstr(ast_str_buffer(str), dialstring_search)) {
return;
}
ast_str_append(&str, 0, "%s", dialstring_search);
}
/*!
* \internal
* \brief Build the CC_INTERFACES channel variable
*
* The method used is to traverse the child dialstrings in the
* passed-in extension monitor, adding any that have the is_valid
* flag set. Then, traverse the monitors, finding all children
* of the starting extension monitor and adding their dialstrings
* as well.
*
* \param starting_point The extension monitor that is the parent to all
* monitors whose dialstrings should be added to CC_INTERFACES
* \param str Where we will store CC_INTERFACES
* \retval void
*/
static void build_cc_interfaces_chanvar(struct ast_cc_monitor *starting_point, struct ast_str *str)
{
struct extension_monitor_pvt *extension_pvt;
struct extension_child_dialstring *child_dialstring;
struct ast_cc_monitor *monitor_iter = starting_point;
int top_level_id = starting_point->id;
size_t length;
/* Init to an empty string. */
ast_str_truncate(str, 0);
/* First we need to take all of the is_valid child_dialstrings from
* the extension monitor we found and add them to the CC_INTERFACES
* chanvar
*/
extension_pvt = starting_point->private_data;
AST_LIST_TRAVERSE(&extension_pvt->child_dialstrings, child_dialstring, next) {
if (child_dialstring->is_valid) {
cc_unique_append(str, child_dialstring->original_dialstring);
}
}
/* And now we get the dialstrings from each of the device monitors */
while ((monitor_iter = AST_LIST_NEXT(monitor_iter, next))) {
if (monitor_iter->parent_id == top_level_id) {
cc_unique_append(str, monitor_iter->dialstring);
}
}
/* str will have an extra '&' tacked onto the end of it, so we need
* to get rid of that.
*/
length = ast_str_strlen(str);
if (length) {
ast_str_truncate(str, length - 1);
}
if (length <= 1) {
/* Nothing to recall? This should not happen. */
ast_log(LOG_ERROR, "CC_INTERFACES is empty. starting device_name:'%s'\n",
starting_point->interface->device_name);
}
}
int ast_cc_agent_set_interfaces_chanvar(struct ast_channel *chan)
{
struct ast_datastore *recall_datastore;
struct cc_monitor_tree *interface_tree;
struct ast_cc_monitor *monitor;
struct cc_recall_ds_data *recall_data;
struct ast_str *str = ast_str_create(64);
int core_id;
if (!str) {
return -1;
}
ast_channel_lock(chan);
if (!(recall_datastore = ast_channel_datastore_find(chan, &recall_ds_info, NULL))) {
ast_channel_unlock(chan);
ast_free(str);
return -1;
}
recall_data = recall_datastore->data;
interface_tree = recall_data->interface_tree;
core_id = recall_data->core_id;
ast_channel_unlock(chan);
AST_LIST_LOCK(interface_tree);
monitor = AST_LIST_FIRST(interface_tree);
build_cc_interfaces_chanvar(monitor, str);
AST_LIST_UNLOCK(interface_tree);
pbx_builtin_setvar_helper(chan, "CC_INTERFACES", ast_str_buffer(str));
ast_log_dynamic_level(cc_logger_level, "Core %d: CC_INTERFACES set to %s\n",
core_id, ast_str_buffer(str));
ast_free(str);
return 0;
}
int ast_set_cc_interfaces_chanvar(struct ast_channel *chan, const char * const extension)
{
struct ast_datastore *recall_datastore;
struct cc_monitor_tree *interface_tree;
struct ast_cc_monitor *monitor_iter;
struct cc_recall_ds_data *recall_data;
struct ast_str *str = ast_str_create(64);
int core_id;
if (!str) {
return -1;
}
ast_channel_lock(chan);
if (!(recall_datastore = ast_channel_datastore_find(chan, &recall_ds_info, NULL))) {
ast_channel_unlock(chan);
ast_free(str);
return -1;
}
recall_data = recall_datastore->data;
interface_tree = recall_data->interface_tree;
core_id = recall_data->core_id;
ast_channel_unlock(chan);
AST_LIST_LOCK(interface_tree);
AST_LIST_TRAVERSE(interface_tree, monitor_iter, next) {
if (!strcmp(monitor_iter->interface->device_name, extension)) {
break;
}
}
if (!monitor_iter) {
/* We couldn't find this extension. This may be because
* we have been directed into an unexpected extension because
* the admin has changed a CC_INTERFACES variable at some point.
*/
AST_LIST_UNLOCK(interface_tree);
ast_free(str);
return -1;
}
build_cc_interfaces_chanvar(monitor_iter, str);
AST_LIST_UNLOCK(interface_tree);
pbx_builtin_setvar_helper(chan, "CC_INTERFACES", ast_str_buffer(str));
ast_log_dynamic_level(cc_logger_level, "Core %d: CC_INTERFACES set to %s\n",
core_id, ast_str_buffer(str));
ast_free(str);
return 0;
}
void ast_ignore_cc(struct ast_channel *chan)
{
struct ast_datastore *cc_datastore;
struct ast_datastore *cc_recall_datastore;
struct dialed_cc_interfaces *cc_interfaces;
struct cc_recall_ds_data *recall_cc_data;
ast_channel_lock(chan);
if ((cc_datastore = ast_channel_datastore_find(chan, &dialed_cc_interfaces_info, NULL))) {
cc_interfaces = cc_datastore->data;
cc_interfaces->ignore = 1;
}
if ((cc_recall_datastore = ast_channel_datastore_find(chan, &recall_ds_info, NULL))) {
recall_cc_data = cc_recall_datastore->data;
recall_cc_data->ignore = 1;
}
ast_channel_unlock(chan);
}
static __attribute__((format(printf, 2, 3))) int cc_offer(const int core_id, const char * const debug, ...)
{
va_list ap;
int res;
va_start(ap, debug);
res = cc_request_state_change(CC_CALLER_OFFERED, core_id, debug, ap);
va_end(ap);
return res;
}
int ast_cc_offer(struct ast_channel *caller_chan)
{
int core_id;
int res = -1;
struct ast_datastore *datastore;
struct dialed_cc_interfaces *cc_interfaces;
char cc_is_offerable;
ast_channel_lock(caller_chan);
if (!(datastore = ast_channel_datastore_find(caller_chan, &dialed_cc_interfaces_info, NULL))) {
ast_channel_unlock(caller_chan);
return res;
}
cc_interfaces = datastore->data;
cc_is_offerable = cc_interfaces->is_original_caller;
core_id = cc_interfaces->core_id;
ast_channel_unlock(caller_chan);
if (cc_is_offerable) {
res = cc_offer(core_id, "CC offered to caller %s", caller_chan->name);
}
return res;
}
int ast_cc_agent_accept_request(int core_id, const char * const debug, ...)
{
va_list ap;
int res;
va_start(ap, debug);
res = cc_request_state_change(CC_CALLER_REQUESTED, core_id, debug, ap);
va_end(ap);
return res;
}
int ast_cc_monitor_request_acked(int core_id, const char * const debug, ...)
{
va_list ap;
int res;
va_start(ap, debug);
res = cc_request_state_change(CC_ACTIVE, core_id, debug, ap);
va_end(ap);
return res;
}
int ast_cc_monitor_callee_available(const int core_id, const char * const debug, ...)
{
va_list ap;
int res;
va_start(ap, debug);
res = cc_request_state_change(CC_CALLEE_READY, core_id, debug, ap);
va_end(ap);
return res;
}
int ast_cc_agent_caller_busy(int core_id, const char * debug, ...)
{
va_list ap;
int res;
va_start(ap, debug);
res = cc_request_state_change(CC_CALLER_BUSY, core_id, debug, ap);
va_end(ap);
return res;
}
int ast_cc_agent_caller_available(int core_id, const char * const debug, ...)
{
va_list ap;
int res;
va_start(ap, debug);
res = cc_request_state_change(CC_ACTIVE, core_id, debug, ap);
va_end(ap);
return res;
}
int ast_cc_agent_recalling(int core_id, const char * const debug, ...)
{
va_list ap;
int res;
va_start(ap, debug);
res = cc_request_state_change(CC_RECALLING, core_id, debug, ap);
va_end(ap);
return res;
}
int ast_cc_completed(struct ast_channel *chan, const char * const debug, ...)
{
struct ast_datastore *recall_datastore;
struct cc_recall_ds_data *recall_data;
int core_id;
va_list ap;
int res;
ast_channel_lock(chan);
if (!(recall_datastore = ast_channel_datastore_find(chan, &recall_ds_info, NULL))) {
/* Silly! Why did you call this function if there's no recall DS? */
ast_channel_unlock(chan);
return -1;
}
recall_data = recall_datastore->data;
if (recall_data->nested || recall_data->ignore) {
/* If this is being called from a nested Dial, it is too
* early to determine if the recall has actually completed.
* The outermost dial is the only one with the authority to
* declare the recall to be complete.
*
* Similarly, if this function has been called when the
* recall has progressed beyond the first dial, this is not
* a legitimate time to declare the recall to be done. In fact,
* that should have been done already.
*/
ast_channel_unlock(chan);
return -1;
}
core_id = recall_data->core_id;
ast_channel_unlock(chan);
va_start(ap, debug);
res = cc_request_state_change(CC_COMPLETE, core_id, debug, ap);
va_end(ap);
return res;
}
int ast_cc_failed(int core_id, const char * const debug, ...)
{
va_list ap;
int res;
va_start(ap, debug);
res = cc_request_state_change(CC_FAILED, core_id, debug, ap);
va_end(ap);
return res;
}
struct ast_cc_monitor_failure_data {
const char *device_name;
char *debug;
int core_id;
};
static int cc_monitor_failed(void *data)
{
struct ast_cc_monitor_failure_data *failure_data = data;
struct cc_core_instance *core_instance;
struct ast_cc_monitor *monitor_iter;
core_instance = find_cc_core_instance(failure_data->core_id);
if (!core_instance) {
/* Core instance no longer exists or invalid core_id. */
ast_log_dynamic_level(cc_logger_level,
"Core %d: Could not find core instance for device %s '%s'\n",
failure_data->core_id, failure_data->device_name, failure_data->debug);
ast_free((char *) failure_data->device_name);
ast_free((char *) failure_data->debug);
ast_free(failure_data);
return -1;
}
AST_LIST_LOCK(core_instance->monitors);
AST_LIST_TRAVERSE_SAFE_BEGIN(core_instance->monitors, monitor_iter, next) {
if (monitor_iter->interface->monitor_class == AST_CC_DEVICE_MONITOR) {
if (!strcmp(monitor_iter->interface->device_name, failure_data->device_name)) {
AST_LIST_REMOVE_CURRENT(next);
cc_extension_monitor_change_is_valid(core_instance, monitor_iter->parent_id,
monitor_iter->interface->device_name, 1);
monitor_iter->callbacks->cancel_available_timer(monitor_iter, &monitor_iter->available_timer_id);
manager_event(EVENT_FLAG_CC, "CCMonitorFailed",
"CoreID: %d\r\n"
"Callee: %s\r\n",
monitor_iter->core_id, monitor_iter->interface->device_name);
cc_unref(monitor_iter, "Monitor reported failure. Unref list's reference.");
}
}
}
AST_LIST_TRAVERSE_SAFE_END;
if (!has_device_monitors(core_instance)) {
ast_cc_failed(core_instance->core_id, "All monitors have failed\n");
}
AST_LIST_UNLOCK(core_instance->monitors);
cc_unref(core_instance, "Finished with core_instance in cc_monitor_failed\n");
ast_free((char *) failure_data->device_name);
ast_free((char *) failure_data->debug);
ast_free(failure_data);
return 0;
}
int ast_cc_monitor_failed(int core_id, const char *const monitor_name, const char * const debug, ...)
{
struct ast_cc_monitor_failure_data *failure_data;
int res;
va_list ap;
if (!(failure_data = ast_calloc(1, sizeof(*failure_data)))) {
return -1;
}
if (!(failure_data->device_name = ast_strdup(monitor_name))) {
ast_free(failure_data);
return -1;
}
va_start(ap, debug);
if (ast_vasprintf(&failure_data->debug, debug, ap) == -1) {
va_end(ap);
ast_free((char *)failure_data->device_name);
ast_free(failure_data);
return -1;
}
va_end(ap);
failure_data->core_id = core_id;
res = ast_taskprocessor_push(cc_core_taskprocessor, cc_monitor_failed, failure_data);
if (res) {
ast_free((char *)failure_data->device_name);
ast_free((char *)failure_data->debug);
ast_free(failure_data);
}
return res;
}
static int cc_status_request(void *data)
{
struct cc_core_instance *core_instance= data;
int res;
res = core_instance->agent->callbacks->status_request(core_instance->agent);
cc_unref(core_instance, "Status request finished. Unref core instance");
return res;
}
int ast_cc_monitor_status_request(int core_id)
{
int res;
struct cc_core_instance *core_instance = find_cc_core_instance(core_id);
if (!core_instance) {
return -1;
}
res = ast_taskprocessor_push(cc_core_taskprocessor, cc_status_request, core_instance);
if (res) {
cc_unref(core_instance, "Unref core instance. ast_taskprocessor_push failed");
}
return res;
}
static int cc_stop_ringing(void *data)
{
struct cc_core_instance *core_instance = data;
int res = 0;
if (core_instance->agent->callbacks->stop_ringing) {
res = core_instance->agent->callbacks->stop_ringing(core_instance->agent);
}
/* If an agent is being asked to stop ringing, then he needs to be prepared if for
* whatever reason he needs to be called back again. The proper state to be in to
* detect such a circumstance is the CC_ACTIVE state.
*
* We get to this state using the slightly unintuitive method of calling
* ast_cc_monitor_request_acked because it gets us to the proper state.
*/
ast_cc_monitor_request_acked(core_instance->core_id, "Agent %s asked to stop ringing. Be prepared to be recalled again.",
core_instance->agent->device_name);
cc_unref(core_instance, "Stop ringing finished. Unref core_instance");
return res;
}
int ast_cc_monitor_stop_ringing(int core_id)
{
int res;
struct cc_core_instance *core_instance = find_cc_core_instance(core_id);
if (!core_instance) {
return -1;
}
res = ast_taskprocessor_push(cc_core_taskprocessor, cc_stop_ringing, core_instance);
if (res) {
cc_unref(core_instance, "Unref core instance. ast_taskprocessor_push failed");
}
return res;
}
static int cc_party_b_free(void *data)
{
struct cc_core_instance *core_instance = data;
int res = 0;
if (core_instance->agent->callbacks->party_b_free) {
res = core_instance->agent->callbacks->party_b_free(core_instance->agent);
}
cc_unref(core_instance, "Party B free finished. Unref core_instance");
return res;
}
int ast_cc_monitor_party_b_free(int core_id)
{
int res;
struct cc_core_instance *core_instance = find_cc_core_instance(core_id);
if (!core_instance) {
return -1;
}
res = ast_taskprocessor_push(cc_core_taskprocessor, cc_party_b_free, core_instance);
if (res) {
cc_unref(core_instance, "Unref core instance. ast_taskprocessor_push failed");
}
return res;
}
struct cc_status_response_args {
struct cc_core_instance *core_instance;
enum ast_device_state devstate;
};
static int cc_status_response(void *data)
{
struct cc_status_response_args *args = data;
struct cc_core_instance *core_instance = args->core_instance;
struct ast_cc_monitor *monitor_iter;
enum ast_device_state devstate = args->devstate;
ast_free(args);
AST_LIST_LOCK(core_instance->monitors);
AST_LIST_TRAVERSE(core_instance->monitors, monitor_iter, next) {
if (monitor_iter->interface->monitor_class == AST_CC_DEVICE_MONITOR &&
monitor_iter->callbacks->status_response) {
monitor_iter->callbacks->status_response(monitor_iter, devstate);
}
}
AST_LIST_UNLOCK(core_instance->monitors);
cc_unref(core_instance, "Status response finished. Unref core instance");
return 0;
}
int ast_cc_agent_status_response(int core_id, enum ast_device_state devstate)
{
struct cc_status_response_args *args;
struct cc_core_instance *core_instance;
int res;
args = ast_calloc(1, sizeof(*args));
if (!args) {
return -1;
}
core_instance = find_cc_core_instance(core_id);
if (!core_instance) {
ast_free(args);
return -1;
}
args->core_instance = core_instance;
args->devstate = devstate;
res = ast_taskprocessor_push(cc_core_taskprocessor, cc_status_response, args);
if (res) {
cc_unref(core_instance, "Unref core instance. ast_taskprocessor_push failed");
ast_free(args);
}
return res;
}
static int cc_build_payload(struct ast_channel *chan, struct ast_cc_config_params *cc_params,
const char *monitor_type, const char * const device_name, const char * dialstring,
enum ast_cc_service_type service, void *private_data, struct cc_control_payload *payload)
{
struct ast_datastore *datastore;
struct dialed_cc_interfaces *cc_interfaces;
int dial_parent_id;
ast_channel_lock(chan);
datastore = ast_channel_datastore_find(chan, &dialed_cc_interfaces_info, NULL);
if (!datastore) {
ast_channel_unlock(chan);
return -1;
}
cc_interfaces = datastore->data;
dial_parent_id = cc_interfaces->dial_parent_id;
ast_channel_unlock(chan);
payload->monitor_type = monitor_type;
payload->private_data = private_data;
payload->service = service;
ast_cc_copy_config_params(&payload->config_params, cc_params);
payload->parent_interface_id = dial_parent_id;
ast_copy_string(payload->device_name, device_name, sizeof(payload->device_name));
ast_copy_string(payload->dialstring, dialstring, sizeof(payload->dialstring));
return 0;
}
int ast_queue_cc_frame(struct ast_channel *chan, const char *monitor_type,
const char * const dialstring, enum ast_cc_service_type service, void *private_data)
{
struct ast_frame frame = {0,};
char device_name[AST_CHANNEL_NAME];
int retval;
struct ast_cc_config_params *cc_params;
cc_params = ast_channel_get_cc_config_params(chan);
if (!cc_params) {
return -1;
}
ast_channel_get_device_name(chan, device_name, sizeof(device_name));
if (ast_cc_monitor_count(device_name, monitor_type) >= ast_get_cc_max_monitors(cc_params)) {
ast_log(LOG_NOTICE, "Not queuing a CC frame for device %s since it already has its maximum monitors allocated\n", device_name);
return -1;
}
if (ast_cc_build_frame(chan, cc_params, monitor_type, device_name, dialstring, service, private_data, &frame)) {
/* Frame building failed. We can't use this. */
return -1;
}
retval = ast_queue_frame(chan, &frame);
ast_frfree(&frame);
return retval;
}
int ast_cc_build_frame(struct ast_channel *chan, struct ast_cc_config_params *cc_params,
const char *monitor_type, const char * const device_name,
const char * const dialstring, enum ast_cc_service_type service, void *private_data,
struct ast_frame *frame)
{
struct cc_control_payload *payload = ast_calloc(1, sizeof(*payload));
if (!payload) {
return -1;
}
if (cc_build_payload(chan, cc_params, monitor_type, device_name, dialstring, service, private_data, payload)) {
/* Something screwed up, we can't make a frame with this */
ast_free(payload);
return -1;
}
frame->frametype = AST_FRAME_CONTROL;
frame->subclass.integer = AST_CONTROL_CC;
frame->data.ptr = payload;
frame->datalen = sizeof(*payload);
frame->mallocd = AST_MALLOCD_DATA;
return 0;
}
void ast_cc_call_failed(struct ast_channel *incoming, struct ast_channel *outgoing, const char * const dialstring)
{
char device_name[AST_CHANNEL_NAME];
struct cc_control_payload payload;
struct ast_cc_config_params *cc_params;
if (outgoing->hangupcause != AST_CAUSE_BUSY && outgoing->hangupcause != AST_CAUSE_CONGESTION) {
/* It doesn't make sense to try to offer CCBS to the caller if the reason for ast_call
* failing is something other than busy or congestion
*/
return;
}
cc_params = ast_channel_get_cc_config_params(outgoing);
if (!cc_params) {
return;
}
if (ast_get_cc_monitor_policy(cc_params) != AST_CC_MONITOR_GENERIC) {
/* This sort of CCBS only works if using generic CC. For native, we would end up sending
* a CC request for a non-existent call. The far end will reject this every time
*/
return;
}
ast_channel_get_device_name(outgoing, device_name, sizeof(device_name));
if (cc_build_payload(outgoing, cc_params, AST_CC_GENERIC_MONITOR_TYPE, device_name,
dialstring, AST_CC_CCBS, NULL, &payload)) {
/* Something screwed up, we can't make a frame with this */
return;
}
ast_handle_cc_control_frame(incoming, outgoing, &payload);
}
void ast_cc_busy_interface(struct ast_channel *inbound, struct ast_cc_config_params *cc_params,
const char *monitor_type, const char * const device_name, const char * const dialstring, void *private_data)
{
struct cc_control_payload payload;
if (cc_build_payload(inbound, cc_params, monitor_type, device_name, dialstring, AST_CC_CCBS, private_data, &payload)) {
/* Something screwed up. Don't try to handle this payload */
call_destructor_with_no_monitor(monitor_type, private_data);
return;
}
ast_handle_cc_control_frame(inbound, NULL, &payload);
}
int ast_cc_callback(struct ast_channel *inbound, const char * const tech, const char * const dest, ast_cc_callback_fn callback)
{
const struct ast_channel_tech *chantech = ast_get_channel_tech(tech);
if (chantech && chantech->cc_callback) {
chantech->cc_callback(inbound, dest, callback);
}
return 0;
}
static const char *ccreq_app = "CallCompletionRequest";
static int ccreq_exec(struct ast_channel *chan, const char *data)
{
struct cc_core_instance *core_instance;
char device_name[AST_CHANNEL_NAME];
unsigned long match_flags;
int res;
ast_channel_get_device_name(chan, device_name, sizeof(device_name));
match_flags = MATCH_NO_REQUEST;
if (!(core_instance = ao2_t_callback_data(cc_core_instances, 0, match_agent, device_name, &match_flags, "Find core instance for CallCompletionRequest"))) {
ast_log_dynamic_level(cc_logger_level, "Couldn't find a core instance for caller %s\n", device_name);
pbx_builtin_setvar_helper(chan, "CC_REQUEST_RESULT", "FAIL");
pbx_builtin_setvar_helper(chan, "CC_REQUEST_REASON", "NO_CORE_INSTANCE");
return 0;
}
ast_log_dynamic_level(cc_logger_level, "Core %d: Found core_instance for caller %s\n",
core_instance->core_id, device_name);
if (strcmp(core_instance->agent->callbacks->type, "generic")) {
ast_log_dynamic_level(cc_logger_level, "Core %d: CallCompletionRequest is only for generic agent types.\n",
core_instance->core_id);
pbx_builtin_setvar_helper(chan, "CC_REQUEST_RESULT", "FAIL");
pbx_builtin_setvar_helper(chan, "CC_REQUEST_REASON", "NOT_GENERIC");
cc_unref(core_instance, "Unref core_instance since CallCompletionRequest was called with native agent");
return 0;
}
if (!ast_cc_request_is_within_limits()) {
ast_log_dynamic_level(cc_logger_level, "Core %d: CallCompletionRequest failed. Too many requests in the system\n",
core_instance->core_id);
ast_cc_failed(core_instance->core_id, "Too many CC requests\n");
pbx_builtin_setvar_helper(chan, "CC_REQUEST_RESULT", "FAIL");
pbx_builtin_setvar_helper(chan, "CC_REQUEST_REASON", "TOO_MANY_REQUESTS");
cc_unref(core_instance, "Unref core_instance since too many CC requests");
return 0;
}
res = ast_cc_agent_accept_request(core_instance->core_id, "CallCompletionRequest called by caller %s for core_id %d", device_name, core_instance->core_id);
pbx_builtin_setvar_helper(chan, "CC_REQUEST_RESULT", res ? "FAIL" : "SUCCESS");
if (res) {
pbx_builtin_setvar_helper(chan, "CC_REQUEST_REASON", "UNSPECIFIED");
}
cc_unref(core_instance, "Done with CallCompletionRequest");
return 0;
}
static const char *cccancel_app = "CallCompletionCancel";
static int cccancel_exec(struct ast_channel *chan, const char *data)
{
struct cc_core_instance *core_instance;
char device_name[AST_CHANNEL_NAME];
unsigned long match_flags;
int res;
ast_channel_get_device_name(chan, device_name, sizeof(device_name));
match_flags = MATCH_REQUEST;
if (!(core_instance = ao2_t_callback_data(cc_core_instances, 0, match_agent, device_name, &match_flags, "Find core instance for CallCompletionCancel"))) {
ast_log_dynamic_level(cc_logger_level, "Cannot find CC transaction to cancel for caller %s\n", device_name);
pbx_builtin_setvar_helper(chan, "CC_CANCEL_RESULT", "FAIL");
pbx_builtin_setvar_helper(chan, "CC_CANCEL_REASON", "NO_CORE_INSTANCE");
return 0;
}
if (strcmp(core_instance->agent->callbacks->type, "generic")) {
ast_log(LOG_WARNING, "CallCompletionCancel may only be used for calles with a generic agent\n");
cc_unref(core_instance, "Unref core instance found during CallCompletionCancel");
pbx_builtin_setvar_helper(chan, "CC_CANCEL_RESULT", "FAIL");
pbx_builtin_setvar_helper(chan, "CC_CANCEL_REASON", "NOT_GENERIC");
return 0;
}
res = ast_cc_failed(core_instance->core_id, "Call completion request Cancelled for core ID %d by caller %s",
core_instance->core_id, device_name);
cc_unref(core_instance, "Unref core instance found during CallCompletionCancel");
pbx_builtin_setvar_helper(chan, "CC_CANCEL_RESULT", res ? "FAIL" : "SUCCESS");
if (res) {
pbx_builtin_setvar_helper(chan, "CC_CANCEL_REASON", "UNSPECIFIED");
}
return 0;
}
struct count_monitors_cb_data {
const char *device_name;
const char *monitor_type;
int count;
};
static int count_monitors_cb(void *obj, void *arg, int flags)
{
struct cc_core_instance *core_instance = obj;
struct count_monitors_cb_data *cb_data = arg;
const char *device_name = cb_data->device_name;
const char *monitor_type = cb_data->monitor_type;
struct ast_cc_monitor *monitor_iter;
AST_LIST_LOCK(core_instance->monitors);
AST_LIST_TRAVERSE(core_instance->monitors, monitor_iter, next) {
if (!strcmp(monitor_iter->interface->device_name, device_name) &&
!strcmp(monitor_iter->interface->monitor_type, monitor_type)) {
cb_data->count++;
break;
}
}
AST_LIST_UNLOCK(core_instance->monitors);
return 0;
}
int ast_cc_monitor_count(const char * const name, const char * const type)
{
struct count_monitors_cb_data data = {.device_name = name, .monitor_type = type,};
ao2_t_callback(cc_core_instances, OBJ_NODATA, count_monitors_cb, &data, "Counting agents");
ast_log_dynamic_level(cc_logger_level, "Counted %d monitors\n", data.count);
return data.count;
}
static void initialize_cc_max_requests(void)
{
struct ast_config *cc_config;
const char *cc_max_requests_str;
struct ast_flags config_flags = {0,};
char *endptr;
cc_config = ast_config_load2("ccss.conf", "ccss", config_flags);
if (!cc_config || cc_config == CONFIG_STATUS_FILEINVALID) {
ast_log(LOG_WARNING, "Could not find valid ccss.conf file. Using cc_max_requests default\n");
global_cc_max_requests = GLOBAL_CC_MAX_REQUESTS_DEFAULT;
return;
}
if (!(cc_max_requests_str = ast_variable_retrieve(cc_config, "general", "cc_max_requests"))) {
ast_config_destroy(cc_config);
global_cc_max_requests = GLOBAL_CC_MAX_REQUESTS_DEFAULT;
return;
}
global_cc_max_requests = strtol(cc_max_requests_str, &endptr, 10);
if (!ast_strlen_zero(endptr)) {
ast_log(LOG_WARNING, "Invalid input given for cc_max_requests. Using default\n");
global_cc_max_requests = GLOBAL_CC_MAX_REQUESTS_DEFAULT;
}
ast_config_destroy(cc_config);
return;
}
/*!
* \internal
* \brief helper function to parse and configure each devstate map
*/
static void initialize_cc_devstate_map_helper(struct ast_config *cc_config, enum cc_state state, const char *cc_setting)
{
const char *cc_devstate_str;
enum ast_device_state this_devstate;
if ((cc_devstate_str = ast_variable_retrieve(cc_config, "general", cc_setting))) {
this_devstate = ast_devstate_val(cc_devstate_str);
if (this_devstate != AST_DEVICE_UNKNOWN) {
cc_state_to_devstate_map[state] = this_devstate;
}
}
}
/*!
* \internal
* \brief initializes cc_state_to_devstate_map from ccss.conf
*
* \details
* The cc_state_to_devstate_map[] is already initialized with all the
* default values. This will update that structure with any changes
* from the ccss.conf file. The configuration parameters in ccss.conf
* should use any valid device state form that is recognized by
* ast_devstate_val() function.
*/
static void initialize_cc_devstate_map(void)
{
struct ast_config *cc_config;
struct ast_flags config_flags = { 0, };
cc_config = ast_config_load2("ccss.conf", "ccss", config_flags);
if (!cc_config || cc_config == CONFIG_STATUS_FILEINVALID) {
ast_log(LOG_WARNING,
"Could not find valid ccss.conf file. Using cc_[state]_devstate defaults\n");
return;
}
initialize_cc_devstate_map_helper(cc_config, CC_AVAILABLE, "cc_available_devstate");
initialize_cc_devstate_map_helper(cc_config, CC_CALLER_OFFERED, "cc_caller_offered_devstate");
initialize_cc_devstate_map_helper(cc_config, CC_CALLER_REQUESTED, "cc_caller_requested_devstate");
initialize_cc_devstate_map_helper(cc_config, CC_ACTIVE, "cc_active_devstate");
initialize_cc_devstate_map_helper(cc_config, CC_CALLEE_READY, "cc_callee_ready_devstate");
initialize_cc_devstate_map_helper(cc_config, CC_CALLER_BUSY, "cc_caller_busy_devstate");
initialize_cc_devstate_map_helper(cc_config, CC_RECALLING, "cc_recalling_devstate");
initialize_cc_devstate_map_helper(cc_config, CC_COMPLETE, "cc_complete_devstate");
initialize_cc_devstate_map_helper(cc_config, CC_FAILED, "cc_failed_devstate");
ast_config_destroy(cc_config);
}
static void cc_cli_print_monitor_stats(struct ast_cc_monitor *monitor, int fd, int parent_id)
{
struct ast_cc_monitor *child_monitor_iter = monitor;
if (!monitor) {
return;
}
ast_cli(fd, "\t\t|-->%s", monitor->interface->device_name);
if (monitor->interface->monitor_class == AST_CC_DEVICE_MONITOR) {
ast_cli(fd, "(%s)", cc_service_to_string(monitor->service_offered));
}
ast_cli(fd, "\n");
while ((child_monitor_iter = AST_LIST_NEXT(child_monitor_iter, next))) {
if (child_monitor_iter->parent_id == monitor->id) {
cc_cli_print_monitor_stats(child_monitor_iter, fd, child_monitor_iter->id);
}
}
}
static int print_stats_cb(void *obj, void *arg, int flags)
{
int *cli_fd = arg;
struct cc_core_instance *core_instance = obj;
ast_cli(*cli_fd, "%d\t\t%s\t\t%s\n", core_instance->core_id, core_instance->agent->device_name,
cc_state_to_string(core_instance->current_state));
AST_LIST_LOCK(core_instance->monitors);
cc_cli_print_monitor_stats(AST_LIST_FIRST(core_instance->monitors), *cli_fd, 0);
AST_LIST_UNLOCK(core_instance->monitors);
return 0;
}
static int cc_cli_output_status(void *data)
{
int *cli_fd = data;
int count = ao2_container_count(cc_core_instances);
if (!count) {
ast_cli(*cli_fd, "There are currently no active call completion transactions\n");
} else {
ast_cli(*cli_fd, "%d Call completion transactions\n", count);
ast_cli(*cli_fd, "Core ID\t\tCaller\t\t\t\tStatus\n");
ast_cli(*cli_fd, "----------------------------------------------------------------------------\n");
ao2_t_callback(cc_core_instances, OBJ_NODATA, print_stats_cb, cli_fd, "Printing stats to CLI");
}
ast_free(cli_fd);
return 0;
}
static char *handle_cc_status(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
{
int *cli_fd;
switch (cmd) {
case CLI_INIT:
e->command = "cc report status";
e->usage =
"Usage: cc report status\n"
" Report the current status of any ongoing CC transactions\n";
return NULL;
case CLI_GENERATE:
return NULL;
}
if (a->argc != 3) {
return CLI_SHOWUSAGE;
}
cli_fd = ast_malloc(sizeof(*cli_fd));
if (!cli_fd) {
return CLI_FAILURE;
}
*cli_fd = a->fd;
if (ast_taskprocessor_push(cc_core_taskprocessor, cc_cli_output_status, cli_fd)) {
ast_free(cli_fd);
return CLI_FAILURE;
}
return CLI_SUCCESS;
}
static int kill_cores(void *obj, void *arg, int flags)
{
int *core_id = arg;
struct cc_core_instance *core_instance = obj;
if (!core_id || (core_instance->core_id == *core_id)) {
ast_cc_failed(core_instance->core_id, "CC transaction canceled administratively\n");
}
return 0;
}
static char *complete_core_id(const char *line, const char *word, int pos, int state)
{
int which = 0;
int wordlen = strlen(word);
char *ret = NULL;
struct ao2_iterator core_iter = ao2_iterator_init(cc_core_instances, 0);
struct cc_core_instance *core_instance;
for (; (core_instance = ao2_t_iterator_next(&core_iter, "Next core instance"));
cc_unref(core_instance, "CLI tab completion iteration")) {
char core_id_str[20];
snprintf(core_id_str, sizeof(core_id_str), "%d", core_instance->core_id);
if (!strncmp(word, core_id_str, wordlen) && ++which > state) {
ret = ast_strdup(core_id_str);
cc_unref(core_instance, "Found a matching core ID for CLI tab-completion");
break;
}
}
ao2_iterator_destroy(&core_iter);
return ret;
}
static char *handle_cc_kill(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
{
static const char * const option[] = { "core", "all", NULL };
switch (cmd) {
case CLI_INIT:
e->command = "cc cancel";
e->usage =
"Usage: cc cancel can be used in two ways.\n"
" 1. 'cc cancel core [core ID]' will cancel the CC transaction with\n"
" core ID equal to the specified core ID.\n"
" 2. 'cc cancel all' will cancel all active CC transactions.\n";
return NULL;
case CLI_GENERATE:
if (a->pos == 2) {
return ast_cli_complete(a->word, option, a->n);
}
if (a->pos == 3) {
return complete_core_id(a->line, a->word, a->pos, a->n);
}
return NULL;
}
if (a->argc == 4) {
int core_id;
char *endptr;
if (strcasecmp(a->argv[2], "core")) {
return CLI_SHOWUSAGE;
}
core_id = strtol(a->argv[3], &endptr, 10);
if ((errno != 0 && core_id == 0) || (endptr == a->argv[3])) {
return CLI_SHOWUSAGE;
}
ao2_t_callback(cc_core_instances, OBJ_NODATA, kill_cores, &core_id, "CLI Killing Core Id");
} else if (a->argc == 3) {
if (strcasecmp(a->argv[2], "all")) {
return CLI_SHOWUSAGE;
}
ao2_t_callback(cc_core_instances, OBJ_NODATA, kill_cores, NULL, "CLI Killing all CC cores");
} else {
return CLI_SHOWUSAGE;
}
return CLI_SUCCESS;
}
static struct ast_cli_entry cc_cli[] = {
AST_CLI_DEFINE(handle_cc_status, "Reports CC stats"),
AST_CLI_DEFINE(handle_cc_kill, "Kill a CC transaction"),
};
int ast_cc_init(void)
{
int res;
if (!(cc_core_instances = ao2_t_container_alloc(CC_CORE_INSTANCES_BUCKETS,
cc_core_instance_hash_fn, cc_core_instance_cmp_fn,
"Create core instance container"))) {
return -1;
}
if (!(generic_monitors = ao2_t_container_alloc(CC_CORE_INSTANCES_BUCKETS,
generic_monitor_hash_fn, generic_monitor_cmp_fn,
"Create generic monitor container"))) {
return -1;
}
if (!(cc_core_taskprocessor = ast_taskprocessor_get("CCSS core", TPS_REF_DEFAULT))) {
return -1;
}
if (!(cc_sched_context = ast_sched_context_create())) {
return -1;
}
if (ast_sched_start_thread(cc_sched_context)) {
return -1;
}
res = ast_register_application2(ccreq_app, ccreq_exec, NULL, NULL, NULL);
res |= ast_register_application2(cccancel_app, cccancel_exec, NULL, NULL, NULL);
res |= ast_cc_monitor_register(&generic_monitor_cbs);
res |= ast_cc_agent_register(&generic_agent_callbacks);
ast_cli_register_multiple(cc_cli, ARRAY_LEN(cc_cli));
cc_logger_level = ast_logger_register_level(CC_LOGGER_LEVEL_NAME);
dialed_cc_interface_counter = 1;
initialize_cc_max_requests();
/* Read the map and register the device state callback for generic agents */
initialize_cc_devstate_map();
res |= ast_devstate_prov_add("ccss", ccss_device_state);
return res;
}