aboutsummaryrefslogtreecommitdiffstats
path: root/src/libam/am.c
blob: 9c8bf587dadd19d4d789face803c0f551b640c59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/* AM modulation and de-modulation
 *
 * (C) 2018 by Andreas Eversberg <jolly@eversberg.eu>
 * All Rights Reserved
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <stdint.h>
#include <string.h>
#include <math.h>
#include "../libsample/sample.h"
#include "am.h"

#define CARRIER_FILTER 30.0

/* Amplitude modulation in SDR:
 * Just use the base band (audio signal) as real value, and 0.0 as imaginary
 * value. The you have two side bands. Be sure to have a DC level, so you
 * have a carrier.
 */

int am_mod_init(am_mod_t *mod, double samplerate, double offset, double gain, double bias)
{
	memset(mod, 0, sizeof(*mod));
	mod->gain = gain;
	mod->bias = bias;
	mod->phasestep = 2.0 * M_PI * offset / samplerate;

	return 0;
}

void am_mod_exit(am_mod_t __attribute__((unused)) *mod)
{
}

void am_modulate_complex(am_mod_t *mod, sample_t *amplitude, int num, float *baseband)
{
	int s;
	double vector;
	double phasestep = mod->phasestep;
	double phase = mod->phase;
	double gain = mod->gain;
	double bias = mod->bias;

	for (s = 0; s < num; s++) {
		vector = *amplitude++ * gain + bias;
		*baseband++ = cos(phase) * vector;
		*baseband++ = sin(phase) * vector;
		phase += phasestep;
		if (phase < 0.0)
			phase += 2.0 * M_PI;
		else if (phase >= 2.0 * M_PI)
			phase -= 2.0 * M_PI;
	}

	mod->phase = phase;
}

/* init AM demodulator */
int am_demod_init(am_demod_t *demod, double samplerate, double offset, double bandwidth, double gain)
{
	memset(demod, 0, sizeof(*demod));
	demod->gain = gain;
	demod->phasestep = 2 * M_PI * -offset / samplerate;

	/* use fourth order (2 iter) filter, since it is as fast as second order (1 iter) filter */
	iir_lowpass_init(&demod->lp[0], bandwidth, samplerate, 2);
	iir_lowpass_init(&demod->lp[1], bandwidth, samplerate, 2);

	/* filter carrier */
	iir_lowpass_init(&demod->lp[2], CARRIER_FILTER, samplerate, 1);

	return 0;
}

void am_demod_exit(am_demod_t __attribute__((unused)) *demod)
{
}

/* do amplitude demodulation of baseband and write them to samples */
void am_demodulate_complex(am_demod_t *demod, sample_t *amplitude, int length, float *baseband, sample_t *I, sample_t *Q, sample_t *carrier)
{
	int s, ss;
	double phasestep = demod->phasestep;
	double phase = demod->phase;
	double gain = demod->gain;
	double i, q;
	double _sin, _cos;

	/* rotate spectrum */
	for (s = 0, ss = 0; s < length; s++) {
		i = baseband[ss++];
		q = baseband[ss++];
		_sin = sin(phase);
		_cos = cos(phase);
		phase += phasestep;
		if (phase < 0.0)
			phase += 2.0 * M_PI;
		else if (phase >= 2.0 * M_PI)
			phase -= 2.0 * M_PI;
		I[s] = i * _cos - q * _sin;
		Q[s] = i * _sin + q * _cos;
	}
	demod->phase = phase;

	/* filter bandwidth */
	iir_process(&demod->lp[0], I, length);
	iir_process(&demod->lp[1], Q, length);

	/* demod */
	for (s = 0; s < length; s++)
		amplitude[s] = carrier[s] = sqrt(I[s] * I[s] + Q[s] * Q[s]);

	/* filter carrier */
	iir_process(&demod->lp[2], carrier, length);

	/* normalize */
	for (s = 0; s < length; s++)
		amplitude[s] = (amplitude[s] - carrier[s]) / carrier[s] * gain;
}