dect
/
asterisk
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
asterisk/main/udptl.c

1373 lines
38 KiB
C

/*
* Asterisk -- A telephony toolkit for Linux.
*
* UDPTL support for T.38
*
* Copyright (C) 2005, Steve Underwood, partly based on RTP code which is
* Copyright (C) 1999-2006, Digium, Inc.
*
* Steve Underwood <steveu@coppice.org>
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*
* A license has been granted to Digium (via disclaimer) for the use of
* this code.
*/
/*!
* \file
*
* \brief UDPTL support for T.38 faxing
*
*
* \author Mark Spencer <markster@digium.com>, Steve Underwood <steveu@coppice.org>
*
* \page T38fax_udptl T.38 support :: UDPTL
*
* Asterisk supports T.38 fax passthrough, origination and termination. It does
* not support gateway operation. The only channel driver that supports T.38 at
* this time is chan_sip.
*
* UDPTL is handled very much like RTP. It can be reinvited to go directly between
* the endpoints, without involving Asterisk in the media stream.
*
* \b References:
* - chan_sip.c
* - udptl.c
* - app_fax.c
*/
#include "asterisk.h"
ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
#include <sys/time.h>
#include <signal.h>
#include <fcntl.h>
#include "asterisk/udptl.h"
#include "asterisk/frame.h"
#include "asterisk/channel.h"
#include "asterisk/acl.h"
#include "asterisk/config.h"
#include "asterisk/lock.h"
#include "asterisk/utils.h"
#include "asterisk/netsock.h"
#include "asterisk/cli.h"
#include "asterisk/unaligned.h"
#define UDPTL_MTU 1200
#if !defined(FALSE)
#define FALSE 0
#endif
#if !defined(TRUE)
#define TRUE (!FALSE)
#endif
static int udptlstart = 4500;
static int udptlend = 4599;
static int udptldebug; /*!< Are we debugging? */
static struct sockaddr_in udptldebugaddr; /*!< Debug packets to/from this host */
#ifdef SO_NO_CHECK
static int nochecksums;
#endif
static int udptlfecentries;
static int udptlfecspan;
static int udptlmaxdatagram;
static int use_even_ports;
#define LOCAL_FAX_MAX_DATAGRAM 1400
#define MAX_FEC_ENTRIES 5
#define MAX_FEC_SPAN 5
#define UDPTL_BUF_MASK 15
typedef struct {
int buf_len;
uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
} udptl_fec_tx_buffer_t;
typedef struct {
int buf_len;
uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
unsigned int fec_len[MAX_FEC_ENTRIES];
uint8_t fec[MAX_FEC_ENTRIES][LOCAL_FAX_MAX_DATAGRAM];
unsigned int fec_span;
unsigned int fec_entries;
} udptl_fec_rx_buffer_t;
/*! \brief Structure for an UDPTL session */
struct ast_udptl {
int fd;
char resp;
struct ast_frame f[16];
unsigned char rawdata[8192 + AST_FRIENDLY_OFFSET];
unsigned int lasteventseqn;
int nat;
int flags;
struct sockaddr_in us;
struct sockaddr_in them;
int *ioid;
struct sched_context *sched;
struct io_context *io;
void *data;
ast_udptl_callback callback;
/*! This option indicates the error correction scheme used in transmitted UDPTL
* packets and expected in received UDPTL packets.
*/
enum ast_t38_ec_modes error_correction_scheme;
/*! This option indicates the number of error correction entries transmitted in
* UDPTL packets and expected in received UDPTL packets.
*/
unsigned int error_correction_entries;
/*! This option indicates the span of the error correction entries in transmitted
* UDPTL packets (FEC only).
*/
unsigned int error_correction_span;
/*! The maximum size UDPTL packet that can be accepted by
* the remote device.
*/
unsigned int far_max_datagram;
/*! The maximum size UDPTL packet that we are prepared to
* accept.
*/
unsigned int local_max_datagram;
/*! The maximum IFP that can be submitted for sending
* to the remote device. Calculated from far_max_datagram,
* error_correction_scheme and error_correction_entries.
*/
unsigned int far_max_ifp;
/*! The maximum IFP that the local endpoint is prepared
* to accept. Along with error_correction_scheme and
* error_correction_entries, used to calculate local_max_datagram.
*/
unsigned int local_max_ifp;
int verbose;
struct sockaddr_in far;
unsigned int tx_seq_no;
unsigned int rx_seq_no;
unsigned int rx_expected_seq_no;
udptl_fec_tx_buffer_t tx[UDPTL_BUF_MASK + 1];
udptl_fec_rx_buffer_t rx[UDPTL_BUF_MASK + 1];
};
static AST_RWLIST_HEAD_STATIC(protos, ast_udptl_protocol);
static inline int udptl_debug_test_addr(const struct sockaddr_in *addr)
{
if (udptldebug == 0)
return 0;
if (udptldebugaddr.sin_addr.s_addr) {
if (((ntohs(udptldebugaddr.sin_port) != 0) &&
(udptldebugaddr.sin_port != addr->sin_port)) ||
(udptldebugaddr.sin_addr.s_addr != addr->sin_addr.s_addr))
return 0;
}
return 1;
}
static int decode_length(uint8_t *buf, unsigned int limit, unsigned int *len, unsigned int *pvalue)
{
if (*len >= limit)
return -1;
if ((buf[*len] & 0x80) == 0) {
*pvalue = buf[*len];
(*len)++;
return 0;
}
if ((buf[*len] & 0x40) == 0) {
if (*len == limit - 1)
return -1;
*pvalue = (buf[*len] & 0x3F) << 8;
(*len)++;
*pvalue |= buf[*len];
(*len)++;
return 0;
}
*pvalue = (buf[*len] & 0x3F) << 14;
(*len)++;
/* Indicate we have a fragment */
return 1;
}
/*- End of function --------------------------------------------------------*/
static int decode_open_type(uint8_t *buf, unsigned int limit, unsigned int *len, const uint8_t **p_object, unsigned int *p_num_octets)
{
unsigned int octet_cnt;
unsigned int octet_idx;
unsigned int length;
unsigned int i;
const uint8_t **pbuf;
for (octet_idx = 0, *p_num_octets = 0; ; octet_idx += octet_cnt) {
octet_cnt = 0;
if ((length = decode_length(buf, limit, len, &octet_cnt)) < 0)
return -1;
if (octet_cnt > 0) {
*p_num_octets += octet_cnt;
pbuf = &p_object[octet_idx];
i = 0;
/* Make sure the buffer contains at least the number of bits requested */
if ((*len + octet_cnt) > limit)
return -1;
*pbuf = &buf[*len];
*len += octet_cnt;
}
if (length == 0)
break;
}
return 0;
}
/*- End of function --------------------------------------------------------*/
static unsigned int encode_length(uint8_t *buf, unsigned int *len, unsigned int value)
{
unsigned int multiplier;
if (value < 0x80) {
/* 1 octet */
buf[*len] = value;
(*len)++;
return value;
}
if (value < 0x4000) {
/* 2 octets */
/* Set the first bit of the first octet */
buf[*len] = ((0x8000 | value) >> 8) & 0xFF;
(*len)++;
buf[*len] = value & 0xFF;
(*len)++;
return value;
}
/* Fragmentation */
multiplier = (value < 0x10000) ? (value >> 14) : 4;
/* Set the first 2 bits of the octet */
buf[*len] = 0xC0 | multiplier;
(*len)++;
return multiplier << 14;
}
/*- End of function --------------------------------------------------------*/
static int encode_open_type(uint8_t *buf, unsigned int buflen, unsigned int *len, const uint8_t *data, unsigned int num_octets)
{
unsigned int enclen;
unsigned int octet_idx;
uint8_t zero_byte;
/* If open type is of zero length, add a single zero byte (10.1) */
if (num_octets == 0) {
zero_byte = 0;
data = &zero_byte;
num_octets = 1;
}
/* Encode the open type */
for (octet_idx = 0; ; num_octets -= enclen, octet_idx += enclen) {
if ((enclen = encode_length(buf, len, num_octets)) < 0)
return -1;
if (enclen + *len > buflen) {
ast_log(LOG_ERROR, "Buffer overflow detected (%d + %d > %d)\n", enclen, *len, buflen);
return -1;
}
if (enclen > 0) {
memcpy(&buf[*len], &data[octet_idx], enclen);
*len += enclen;
}
if (enclen >= num_octets)
break;
}
return 0;
}
/*- End of function --------------------------------------------------------*/
static int udptl_rx_packet(struct ast_udptl *s, uint8_t *buf, unsigned int len)
{
int stat1;
int stat2;
int i;
int j;
int k;
int l;
int m;
int x;
int limit;
int which;
unsigned int ptr;
unsigned int count;
int total_count;
int seq_no;
const uint8_t *ifp;
const uint8_t *data;
unsigned int ifp_len;
int repaired[16];
const uint8_t *bufs[16];
unsigned int lengths[16];
int span;
int entries;
int ifp_no;
ptr = 0;
ifp_no = 0;
memset(&s->f[0], 0, sizeof(s->f[0]));
/* Decode seq_number */
if (ptr + 2 > len)
return -1;
seq_no = (buf[0] << 8) | buf[1];
ptr += 2;
/* Break out the primary packet */
if ((stat1 = decode_open_type(buf, len, &ptr, &ifp, &ifp_len)) != 0)
return -1;
/* Decode error_recovery */
if (ptr + 1 > len)
return -1;
if ((buf[ptr++] & 0x80) == 0) {
/* Secondary packet mode for error recovery */
if (seq_no > s->rx_seq_no) {
/* We received a later packet than we expected, so we need to check if we can fill in the gap from the
secondary packets. */
total_count = 0;
do {
if ((stat2 = decode_length(buf, len, &ptr, &count)) < 0)
return -1;
for (i = 0; i < count; i++) {
if ((stat1 = decode_open_type(buf, len, &ptr, &bufs[total_count + i], &lengths[total_count + i])) != 0)
return -1;
}
total_count += count;
}
while (stat2 > 0);
/* Step through in reverse order, so we go oldest to newest */
for (i = total_count; i > 0; i--) {
if (seq_no - i >= s->rx_seq_no) {
/* This one wasn't seen before */
/* Decode the secondary IFP packet */
//fprintf(stderr, "Secondary %d, len %d\n", seq_no - i, lengths[i - 1]);
s->f[ifp_no].frametype = AST_FRAME_MODEM;
s->f[ifp_no].subclass = AST_MODEM_T38;
s->f[ifp_no].mallocd = 0;
s->f[ifp_no].seqno = seq_no - i;
s->f[ifp_no].datalen = lengths[i - 1];
s->f[ifp_no].data.ptr = (uint8_t *) bufs[i - 1];
s->f[ifp_no].offset = 0;
s->f[ifp_no].src = "UDPTL";
if (ifp_no > 0)
AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
ifp_no++;
}
}
}
}
else
{
/* FEC mode for error recovery */
/* Our buffers cannot tolerate overlength IFP packets in FEC mode */
if (ifp_len > LOCAL_FAX_MAX_DATAGRAM)
return -1;
/* Update any missed slots in the buffer */
for ( ; seq_no > s->rx_seq_no; s->rx_seq_no++) {
x = s->rx_seq_no & UDPTL_BUF_MASK;
s->rx[x].buf_len = -1;
s->rx[x].fec_len[0] = 0;
s->rx[x].fec_span = 0;
s->rx[x].fec_entries = 0;
}
x = seq_no & UDPTL_BUF_MASK;
memset(repaired, 0, sizeof(repaired));
/* Save the new IFP packet */
memcpy(s->rx[x].buf, ifp, ifp_len);
s->rx[x].buf_len = ifp_len;
repaired[x] = TRUE;
/* Decode the FEC packets */
/* The span is defined as an unconstrained integer, but will never be more
than a small value. */
if (ptr + 2 > len)
return -1;
if (buf[ptr++] != 1)
return -1;
span = buf[ptr++];
s->rx[x].fec_span = span;
/* The number of entries is defined as a length, but will only ever be a small
value. Treat it as such. */
if (ptr + 1 > len)
return -1;
entries = buf[ptr++];
s->rx[x].fec_entries = entries;
/* Decode the elements */
for (i = 0; i < entries; i++) {
if ((stat1 = decode_open_type(buf, len, &ptr, &data, &s->rx[x].fec_len[i])) != 0)
return -1;
if (s->rx[x].fec_len[i] > LOCAL_FAX_MAX_DATAGRAM)
return -1;
/* Save the new FEC data */
memcpy(s->rx[x].fec[i], data, s->rx[x].fec_len[i]);
#if 0
fprintf(stderr, "FEC: ");
for (j = 0; j < s->rx[x].fec_len[i]; j++)
fprintf(stderr, "%02X ", data[j]);
fprintf(stderr, "\n");
#endif
}
/* See if we can reconstruct anything which is missing */
/* TODO: this does not comprehensively hunt back and repair everything that is possible */
for (l = x; l != ((x - (16 - span*entries)) & UDPTL_BUF_MASK); l = (l - 1) & UDPTL_BUF_MASK) {
if (s->rx[l].fec_len[0] <= 0)
continue;
for (m = 0; m < s->rx[l].fec_entries; m++) {
limit = (l + m) & UDPTL_BUF_MASK;
for (which = -1, k = (limit - s->rx[l].fec_span * s->rx[l].fec_entries) & UDPTL_BUF_MASK; k != limit; k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK) {
if (s->rx[k].buf_len <= 0)
which = (which == -1) ? k : -2;
}
if (which >= 0) {
/* Repairable */
for (j = 0; j < s->rx[l].fec_len[m]; j++) {
s->rx[which].buf[j] = s->rx[l].fec[m][j];
for (k = (limit - s->rx[l].fec_span * s->rx[l].fec_entries) & UDPTL_BUF_MASK; k != limit; k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK)
s->rx[which].buf[j] ^= (s->rx[k].buf_len > j) ? s->rx[k].buf[j] : 0;
}
s->rx[which].buf_len = s->rx[l].fec_len[m];
repaired[which] = TRUE;
}
}
}
/* Now play any new packets forwards in time */
for (l = (x + 1) & UDPTL_BUF_MASK, j = seq_no - UDPTL_BUF_MASK; l != x; l = (l + 1) & UDPTL_BUF_MASK, j++) {
if (repaired[l]) {
//fprintf(stderr, "Fixed packet %d, len %d\n", j, l);
s->f[ifp_no].frametype = AST_FRAME_MODEM;
s->f[ifp_no].subclass = AST_MODEM_T38;
s->f[ifp_no].mallocd = 0;
s->f[ifp_no].seqno = j;
s->f[ifp_no].datalen = s->rx[l].buf_len;
s->f[ifp_no].data.ptr = s->rx[l].buf;
s->f[ifp_no].offset = 0;
s->f[ifp_no].src = "UDPTL";
if (ifp_no > 0)
AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
ifp_no++;
}
}
}
/* If packets are received out of sequence, we may have already processed this packet from the error
recovery information in a packet already received. */
if (seq_no >= s->rx_seq_no) {
/* Decode the primary IFP packet */
s->f[ifp_no].frametype = AST_FRAME_MODEM;
s->f[ifp_no].subclass = AST_MODEM_T38;
s->f[ifp_no].mallocd = 0;
s->f[ifp_no].seqno = seq_no;
s->f[ifp_no].datalen = ifp_len;
s->f[ifp_no].data.ptr = (uint8_t *) ifp;
s->f[ifp_no].offset = 0;
s->f[ifp_no].src = "UDPTL";
if (ifp_no > 0)
AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
ifp_no++;
}
s->rx_seq_no = seq_no + 1;
return ifp_no;
}
/*- End of function --------------------------------------------------------*/
static int udptl_build_packet(struct ast_udptl *s, uint8_t *buf, unsigned int buflen, uint8_t *ifp, unsigned int ifp_len)
{
uint8_t fec[LOCAL_FAX_MAX_DATAGRAM * 2];
int i;
int j;
int seq;
int entry;
int entries;
int span;
int m;
unsigned int len;
int limit;
int high_tide;
seq = s->tx_seq_no & 0xFFFF;
/* Map the sequence number to an entry in the circular buffer */
entry = seq & UDPTL_BUF_MASK;
/* We save the message in a circular buffer, for generating FEC or
redundancy sets later on. */
s->tx[entry].buf_len = ifp_len;
memcpy(s->tx[entry].buf, ifp, ifp_len);
/* Build the UDPTLPacket */
len = 0;
/* Encode the sequence number */
buf[len++] = (seq >> 8) & 0xFF;
buf[len++] = seq & 0xFF;
/* Encode the primary IFP packet */
if (encode_open_type(buf, buflen, &len, ifp, ifp_len) < 0)
return -1;
/* Encode the appropriate type of error recovery information */
switch (s->error_correction_scheme)
{
case UDPTL_ERROR_CORRECTION_NONE:
/* Encode the error recovery type */
buf[len++] = 0x00;
/* The number of entries will always be zero, so it is pointless allowing
for the fragmented case here. */
if (encode_length(buf, &len, 0) < 0)
return -1;
break;
case UDPTL_ERROR_CORRECTION_REDUNDANCY:
/* Encode the error recovery type */
buf[len++] = 0x00;
if (s->tx_seq_no > s->error_correction_entries)
entries = s->error_correction_entries;
else
entries = s->tx_seq_no;
/* The number of entries will always be small, so it is pointless allowing
for the fragmented case here. */
if (encode_length(buf, &len, entries) < 0)
return -1;
/* Encode the elements */
for (i = 0; i < entries; i++) {
j = (entry - i - 1) & UDPTL_BUF_MASK;
if (encode_open_type(buf, buflen, &len, s->tx[j].buf, s->tx[j].buf_len) < 0) {
if (option_debug) {
ast_log(LOG_DEBUG, "Encoding failed at i=%d, j=%d\n", i, j);
}
return -1;
}
}
break;
case UDPTL_ERROR_CORRECTION_FEC:
span = s->error_correction_span;
entries = s->error_correction_entries;
if (seq < s->error_correction_span*s->error_correction_entries) {
/* In the initial stages, wind up the FEC smoothly */
entries = seq/s->error_correction_span;
if (seq < s->error_correction_span)
span = 0;
}
/* Encode the error recovery type */
buf[len++] = 0x80;
/* Span is defined as an inconstrained integer, which it dumb. It will only
ever be a small value. Treat it as such. */
buf[len++] = 1;
buf[len++] = span;
/* The number of entries is defined as a length, but will only ever be a small
value. Treat it as such. */
buf[len++] = entries;
for (m = 0; m < entries; m++) {
/* Make an XOR'ed entry the maximum length */
limit = (entry + m) & UDPTL_BUF_MASK;
high_tide = 0;
for (i = (limit - span*entries) & UDPTL_BUF_MASK; i != limit; i = (i + entries) & UDPTL_BUF_MASK) {
if (high_tide < s->tx[i].buf_len) {
for (j = 0; j < high_tide; j++)
fec[j] ^= s->tx[i].buf[j];
for ( ; j < s->tx[i].buf_len; j++)
fec[j] = s->tx[i].buf[j];
high_tide = s->tx[i].buf_len;
} else {
for (j = 0; j < s->tx[i].buf_len; j++)
fec[j] ^= s->tx[i].buf[j];
}
}
if (encode_open_type(buf, buflen, &len, fec, high_tide) < 0)
return -1;
}
break;
}
if (s->verbose)
fprintf(stderr, "\n");
s->tx_seq_no++;
return len;
}
int ast_udptl_fd(const struct ast_udptl *udptl)
{
return udptl->fd;
}
void ast_udptl_set_data(struct ast_udptl *udptl, void *data)
{
udptl->data = data;
}
void ast_udptl_set_callback(struct ast_udptl *udptl, ast_udptl_callback callback)
{
udptl->callback = callback;
}
void ast_udptl_setnat(struct ast_udptl *udptl, int nat)
{
udptl->nat = nat;
}
static int udptlread(int *id, int fd, short events, void *cbdata)
{
struct ast_udptl *udptl = cbdata;
struct ast_frame *f;
if ((f = ast_udptl_read(udptl))) {
if (udptl->callback)
udptl->callback(udptl, f, udptl->data);
}
return 1;
}
struct ast_frame *ast_udptl_read(struct ast_udptl *udptl)
{
int res;
struct sockaddr_in sin;
socklen_t len;
uint16_t seqno = 0;
uint16_t *udptlheader;
len = sizeof(sin);
/* Cache where the header will go */
res = recvfrom(udptl->fd,
udptl->rawdata + AST_FRIENDLY_OFFSET,
sizeof(udptl->rawdata) - AST_FRIENDLY_OFFSET,
0,
(struct sockaddr *) &sin,
&len);
udptlheader = (uint16_t *)(udptl->rawdata + AST_FRIENDLY_OFFSET);
if (res < 0) {
if (errno != EAGAIN)
ast_log(LOG_WARNING, "UDPTL read error: %s\n", strerror(errno));
ast_assert(errno != EBADF);
return &ast_null_frame;
}
/* Ignore if the other side hasn't been given an address yet. */
if (!udptl->them.sin_addr.s_addr || !udptl->them.sin_port)
return &ast_null_frame;
if (udptl->nat) {
/* Send to whoever sent to us */
if ((udptl->them.sin_addr.s_addr != sin.sin_addr.s_addr) ||
(udptl->them.sin_port != sin.sin_port)) {
memcpy(&udptl->them, &sin, sizeof(udptl->them));
ast_debug(1, "UDPTL NAT: Using address %s:%d\n", ast_inet_ntoa(udptl->them.sin_addr), ntohs(udptl->them.sin_port));
}
}
if (udptl_debug_test_addr(&sin)) {
ast_verb(1, "Got UDPTL packet from %s:%d (type %d, seq %d, len %d)\n",
ast_inet_ntoa(sin.sin_addr), ntohs(sin.sin_port), 0, seqno, res);
}
#if 0
printf("Got UDPTL packet from %s:%d (seq %d, len = %d)\n", ast_inet_ntoa(sin.sin_addr), ntohs(sin.sin_port), seqno, res);
#endif
if (udptl_rx_packet(udptl, udptl->rawdata + AST_FRIENDLY_OFFSET, res) < 1)
return &ast_null_frame;
return &udptl->f[0];
}
static void calculate_local_max_datagram(struct ast_udptl *udptl)
{
unsigned int new_max = 0;
/* calculate the amount of space required to receive an IFP
* using the current error correction mode, and ensure that our
* local max datagram size is at least that big
*/
switch (udptl->error_correction_scheme) {
case UDPTL_ERROR_CORRECTION_NONE:
/* only need room for sequence number and length indicators */
new_max = 6 + udptl->local_max_ifp;
break;
case UDPTL_ERROR_CORRECTION_REDUNDANCY:
/* need room for sequence number, length indicators and the
* configured number of redundant packets
*/
new_max = 6 + udptl->local_max_ifp + 2 + (udptl->error_correction_entries * udptl->local_max_ifp);
break;
case UDPTL_ERROR_CORRECTION_FEC:
/* need room for sequence number, length indicators and a
* a single IFP of the maximum size expected
*/
new_max = 6 + udptl->local_max_ifp + 4 + udptl->local_max_ifp;
break;
}
/* add 25% of extra space for insurance, but no larger than LOCAL_FAX_MAX_DATAGRAM */
udptl->local_max_datagram = MIN(new_max * 1.25, LOCAL_FAX_MAX_DATAGRAM);
}
static void calculate_far_max_ifp(struct ast_udptl *udptl)
{
unsigned new_max = 0;
/* calculate the maximum IFP the local endpoint should
* generate based on the far end's maximum datagram size
* and the current error correction mode.
*/
switch (udptl->error_correction_scheme) {
case UDPTL_ERROR_CORRECTION_NONE:
/* only need room for sequence number and length indicators */
new_max = udptl->far_max_datagram - 6;
break;
case UDPTL_ERROR_CORRECTION_REDUNDANCY:
/* need room for sequence number, length indicators and the
* configured number of redundant packets
*/
new_max = (udptl->far_max_datagram - 8) / (udptl->error_correction_entries + 1);
break;
case UDPTL_ERROR_CORRECTION_FEC:
/* need room for sequence number, length indicators and a
* a single IFP of the maximum size expected
*/
new_max = (udptl->far_max_datagram - 10) / 2;
break;
}
/* subtract 25% of space for insurance */
udptl->far_max_ifp = new_max * 0.75;
}
enum ast_t38_ec_modes ast_udptl_get_error_correction_scheme(const struct ast_udptl *udptl)
{
if (udptl)
return udptl->error_correction_scheme;
else {
ast_log(LOG_WARNING, "udptl structure is null\n");
return -1;
}
}
void ast_udptl_set_error_correction_scheme(struct ast_udptl *udptl, enum ast_t38_ec_modes ec)
{
if (udptl) {
udptl->error_correction_scheme = ec;
switch (ec) {
case UDPTL_ERROR_CORRECTION_FEC:
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_FEC;
if (udptl->error_correction_entries == 0) {
udptl->error_correction_entries = 3;
}
if (udptl->error_correction_span == 0) {
udptl->error_correction_span = 3;
}
break;
case UDPTL_ERROR_CORRECTION_REDUNDANCY:
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_REDUNDANCY;
if (udptl->error_correction_entries == 0) {
udptl->error_correction_entries = 3;
}
break;
default:
/* nothing to do */
break;
};
calculate_local_max_datagram(udptl);
calculate_far_max_ifp(udptl);
} else
ast_log(LOG_WARNING, "udptl structure is null\n");
}
unsigned int ast_udptl_get_local_max_datagram(const struct ast_udptl *udptl)
{
if (udptl)
return udptl->local_max_datagram;
else {
ast_log(LOG_WARNING, "udptl structure is null\n");
return 0;
}
}
unsigned int ast_udptl_get_far_max_datagram(const struct ast_udptl *udptl)
{
if (udptl)
return udptl->far_max_datagram;
else {
ast_log(LOG_WARNING, "udptl structure is null\n");
return 0;
}
}
void ast_udptl_set_far_max_datagram(struct ast_udptl *udptl, unsigned int max_datagram)
{
if (udptl) {
udptl->far_max_datagram = max_datagram;
calculate_far_max_ifp(udptl);
} else {
ast_log(LOG_WARNING, "udptl structure is null\n");
}
}
void ast_udptl_set_local_max_ifp(struct ast_udptl *udptl, unsigned int max_ifp)
{
udptl->local_max_ifp = max_ifp;
calculate_local_max_datagram(udptl);
}
unsigned int ast_udptl_get_far_max_ifp(const struct ast_udptl *udptl)
{
return udptl->far_max_ifp;
}
struct ast_udptl *ast_udptl_new_with_bindaddr(struct sched_context *sched, struct io_context *io, int callbackmode, struct in_addr addr)
{
struct ast_udptl *udptl;
int x;
int startplace;
int i;
long int flags;
if (!(udptl = ast_calloc(1, sizeof(*udptl))))
return NULL;
udptl->error_correction_span = udptlfecspan;
udptl->error_correction_entries = udptlfecentries;
udptl->far_max_datagram = udptlmaxdatagram;
udptl->local_max_datagram = udptlmaxdatagram;
for (i = 0; i <= UDPTL_BUF_MASK; i++) {
udptl->rx[i].buf_len = -1;
udptl->tx[i].buf_len = -1;
}
udptl->them.sin_family = AF_INET;
udptl->us.sin_family = AF_INET;
if ((udptl->fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
ast_free(udptl);
ast_log(LOG_WARNING, "Unable to allocate socket: %s\n", strerror(errno));
return NULL;
}
flags = fcntl(udptl->fd, F_GETFL);
fcntl(udptl->fd, F_SETFL, flags | O_NONBLOCK);
#ifdef SO_NO_CHECK
if (nochecksums)
setsockopt(udptl->fd, SOL_SOCKET, SO_NO_CHECK, &nochecksums, sizeof(nochecksums));
#endif
/* Find us a place */
x = (udptlstart == udptlend) ? udptlstart : (ast_random() % (udptlend - udptlstart)) + udptlstart;
if (use_even_ports && (x & 1)) {
++x;
}
startplace = x;
for (;;) {
udptl->us.sin_port = htons(x);
udptl->us.sin_addr = addr;
if (bind(udptl->fd, (struct sockaddr *) &udptl->us, sizeof(udptl->us)) == 0)
break;
if (errno != EADDRINUSE) {
ast_log(LOG_WARNING, "Unexpected bind error: %s\n", strerror(errno));
close(udptl->fd);
ast_free(udptl);
return NULL;
}
if (use_even_ports) {
x += 2;
} else {
++x;
}
if (x > udptlend)
x = udptlstart;
if (x == startplace) {
ast_log(LOG_WARNING, "No UDPTL ports remaining\n");
close(udptl->fd);
ast_free(udptl);
return NULL;
}
}
if (io && sched && callbackmode) {
/* Operate this one in a callback mode */
udptl->sched = sched;
udptl->io = io;
udptl->ioid = ast_io_add(udptl->io, udptl->fd, udptlread, AST_IO_IN, udptl);
}
return udptl;
}
struct ast_udptl *ast_udptl_new(struct sched_context *sched, struct io_context *io, int callbackmode)
{
struct in_addr ia;
memset(&ia, 0, sizeof(ia));
return ast_udptl_new_with_bindaddr(sched, io, callbackmode, ia);
}
int ast_udptl_setqos(struct ast_udptl *udptl, unsigned int tos, unsigned int cos)
{
return ast_netsock_set_qos(udptl->fd, tos, cos, "UDPTL");
}
void ast_udptl_set_peer(struct ast_udptl *udptl, const struct sockaddr_in *them)
{
udptl->them.sin_port = them->sin_port;
udptl->them.sin_addr = them->sin_addr;
}
void ast_udptl_get_peer(const struct ast_udptl *udptl, struct sockaddr_in *them)
{
memset(them, 0, sizeof(*them));
them->sin_family = AF_INET;
them->sin_port = udptl->them.sin_port;
them->sin_addr = udptl->them.sin_addr;
}
void ast_udptl_get_us(const struct ast_udptl *udptl, struct sockaddr_in *us)
{
memcpy(us, &udptl->us, sizeof(udptl->us));
}
void ast_udptl_stop(struct ast_udptl *udptl)
{
memset(&udptl->them.sin_addr, 0, sizeof(udptl->them.sin_addr));
memset(&udptl->them.sin_port, 0, sizeof(udptl->them.sin_port));
}
void ast_udptl_destroy(struct ast_udptl *udptl)
{
if (udptl->ioid)
ast_io_remove(udptl->io, udptl->ioid);
if (udptl->fd > -1)
close(udptl->fd);
ast_free(udptl);
}
int ast_udptl_write(struct ast_udptl *s, struct ast_frame *f)
{
unsigned int seq;
unsigned int len;
int res;
uint8_t buf[s->far_max_datagram];
/* If we have no peer, return immediately */
if (s->them.sin_addr.s_addr == INADDR_ANY)
return 0;
/* If there is no data length, return immediately */
if (f->datalen == 0)
return 0;
if ((f->frametype != AST_FRAME_MODEM) ||
(f->subclass != AST_MODEM_T38)) {
ast_log(LOG_WARNING, "UDPTL can only send T.38 data.\n");
return -1;
}
if (f->datalen > s->far_max_ifp) {
ast_log(LOG_WARNING,
"UDPTL asked to send %d bytes of IFP when far end only prepared to accept %d bytes; data loss may occur. "
"You may need to override the T38FaxMaxDatagram value for this endpoint in the channel driver configuration.\n", f->datalen, s->far_max_ifp);
}
/* Save seq_no for debug output because udptl_build_packet increments it */
seq = s->tx_seq_no & 0xFFFF;
/* Cook up the UDPTL packet, with the relevant EC info. */
len = udptl_build_packet(s, buf, sizeof(buf), f->data.ptr, f->datalen);
if (len > 0 && s->them.sin_port && s->them.sin_addr.s_addr) {
if ((res = sendto(s->fd, buf, len, 0, (struct sockaddr *) &s->them, sizeof(s->them))) < 0)
ast_log(LOG_NOTICE, "UDPTL Transmission error to %s:%d: %s\n", ast_inet_ntoa(s->them.sin_addr), ntohs(s->them.sin_port), strerror(errno));
#if 0
printf("Sent %d bytes of UDPTL data to %s:%d\n", res, ast_inet_ntoa(udptl->them.sin_addr), ntohs(udptl->them.sin_port));
#endif
if (udptl_debug_test_addr(&s->them))
ast_verb(1, "Sent UDPTL packet to %s:%d (type %d, seq %d, len %d)\n",
ast_inet_ntoa(s->them.sin_addr),
ntohs(s->them.sin_port), 0, seq, len);
}
return 0;
}
void ast_udptl_proto_unregister(struct ast_udptl_protocol *proto)
{
AST_RWLIST_WRLOCK(&protos);
AST_RWLIST_REMOVE(&protos, proto, list);
AST_RWLIST_UNLOCK(&protos);
}
int ast_udptl_proto_register(struct ast_udptl_protocol *proto)
{
struct ast_udptl_protocol *cur;
AST_RWLIST_WRLOCK(&protos);
AST_RWLIST_TRAVERSE(&protos, cur, list) {
if (cur->type == proto->type) {
ast_log(LOG_WARNING, "Tried to register same protocol '%s' twice\n", cur->type);
AST_RWLIST_UNLOCK(&protos);
return -1;
}
}
AST_RWLIST_INSERT_TAIL(&protos, proto, list);
AST_RWLIST_UNLOCK(&protos);
return 0;
}
static struct ast_udptl_protocol *get_proto(struct ast_channel *chan)
{
struct ast_udptl_protocol *cur = NULL;
AST_RWLIST_RDLOCK(&protos);
AST_RWLIST_TRAVERSE(&protos, cur, list) {
if (cur->type == chan->tech->type)
break;
}
AST_RWLIST_UNLOCK(&protos);
return cur;
}
int ast_udptl_bridge(struct ast_channel *c0, struct ast_channel *c1, int flags, struct ast_frame **fo, struct ast_channel **rc)
{
struct ast_frame *f;
struct ast_channel *who;
struct ast_channel *cs[3];
struct ast_udptl *p0;
struct ast_udptl *p1;
struct ast_udptl_protocol *pr0;
struct ast_udptl_protocol *pr1;
struct sockaddr_in ac0;
struct sockaddr_in ac1;
struct sockaddr_in t0;
struct sockaddr_in t1;
void *pvt0;
void *pvt1;
int to;
ast_channel_lock(c0);
while (ast_channel_trylock(c1)) {
ast_channel_unlock(c0);
usleep(1);
ast_channel_lock(c0);
}
pr0 = get_proto(c0);
pr1 = get_proto(c1);
if (!pr0) {
ast_log(LOG_WARNING, "Can't find native functions for channel '%s'\n", c0->name);
ast_channel_unlock(c0);
ast_channel_unlock(c1);
return -1;
}
if (!pr1) {
ast_log(LOG_WARNING, "Can't find native functions for channel '%s'\n", c1->name);
ast_channel_unlock(c0);
ast_channel_unlock(c1);
return -1;
}
pvt0 = c0->tech_pvt;
pvt1 = c1->tech_pvt;
p0 = pr0->get_udptl_info(c0);
p1 = pr1->get_udptl_info(c1);
if (!p0 || !p1) {
/* Somebody doesn't want to play... */
ast_channel_unlock(c0);
ast_channel_unlock(c1);
return -2;
}
if (pr0->set_udptl_peer(c0, p1)) {
ast_log(LOG_WARNING, "Channel '%s' failed to talk to '%s'\n", c0->name, c1->name);
memset(&ac1, 0, sizeof(ac1));
} else {
/* Store UDPTL peer */
ast_udptl_get_peer(p1, &ac1);
}
if (pr1->set_udptl_peer(c1, p0)) {
ast_log(LOG_WARNING, "Channel '%s' failed to talk back to '%s'\n", c1->name, c0->name);
memset(&ac0, 0, sizeof(ac0));
} else {
/* Store UDPTL peer */
ast_udptl_get_peer(p0, &ac0);
}
ast_channel_unlock(c0);
ast_channel_unlock(c1);
cs[0] = c0;
cs[1] = c1;
cs[2] = NULL;
for (;;) {
if ((c0->tech_pvt != pvt0) ||
(c1->tech_pvt != pvt1) ||
(c0->masq || c0->masqr || c1->masq || c1->masqr)) {
ast_debug(1, "Oooh, something is weird, backing out\n");
/* Tell it to try again later */
return -3;
}
to = -1;
ast_udptl_get_peer(p1, &t1);
ast_udptl_get_peer(p0, &t0);
if (inaddrcmp(&t1, &ac1)) {
ast_debug(1, "Oooh, '%s' changed end address to %s:%d\n",
c1->name, ast_inet_ntoa(t1.sin_addr), ntohs(t1.sin_port));
ast_debug(1, "Oooh, '%s' was %s:%d\n",
c1->name, ast_inet_ntoa(ac1.sin_addr), ntohs(ac1.sin_port));
memcpy(&ac1, &t1, sizeof(ac1));
}
if (inaddrcmp(&t0, &ac0)) {
ast_debug(1, "Oooh, '%s' changed end address to %s:%d\n",
c0->name, ast_inet_ntoa(t0.sin_addr), ntohs(t0.sin_port));
ast_debug(1, "Oooh, '%s' was %s:%d\n",
c0->name, ast_inet_ntoa(ac0.sin_addr), ntohs(ac0.sin_port));
memcpy(&ac0, &t0, sizeof(ac0));
}
who = ast_waitfor_n(cs, 2, &to);
if (!who) {
ast_debug(1, "Ooh, empty read...\n");
/* check for hangup / whentohangup */
if (ast_check_hangup(c0) || ast_check_hangup(c1))
break;
continue;
}
f = ast_read(who);
if (!f) {
*fo = f;
*rc = who;
ast_debug(1, "Oooh, got a %s\n", f ? "digit" : "hangup");
/* That's all we needed */
return 0;
} else {
if (f->frametype == AST_FRAME_MODEM) {
/* Forward T.38 frames if they happen upon us */
if (who == c0) {
ast_write(c1, f);
} else if (who == c1) {
ast_write(c0, f);
}
}
ast_frfree(f);
}
/* Swap priority. Not that it's a big deal at this point */
cs[2] = cs[0];
cs[0] = cs[1];
cs[1] = cs[2];
}
return -1;
}
static char *handle_cli_udptl_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
{
struct hostent *hp;
struct ast_hostent ahp;
int port;
char *p;
char *arg;
switch (cmd) {
case CLI_INIT:
e->command = "udptl set debug {on|off|ip}";
e->usage =
"Usage: udptl set debug {on|off|ip host[:port]}\n"
" Enable or disable dumping of UDPTL packets.\n"
" If ip is specified, limit the dumped packets to those to and from\n"
" the specified 'host' with optional port.\n";
return NULL;
case CLI_GENERATE:
return NULL;
}
if (a->argc < 4 || a->argc > 5)
return CLI_SHOWUSAGE;
if (a->argc == 4) {
if (!strncasecmp(a->argv[3], "on", 2)) {
udptldebug = 1;
memset(&udptldebugaddr, 0, sizeof(udptldebugaddr));
ast_cli(a->fd, "UDPTL Debugging Enabled\n");
} else if (!strncasecmp(a->argv[3], "off", 3)) {
udptldebug = 0;
ast_cli(a->fd, "UDPTL Debugging Disabled\n");
} else {
return CLI_SHOWUSAGE;
}
} else {
if (strncasecmp(a->argv[3], "ip", 2))
return CLI_SHOWUSAGE;
port = 0;
arg = ast_strdupa(a->argv[4]);
p = strstr(arg, ":");
if (p) {
*p = '\0';
p++;
port = atoi(p);
}
hp = ast_gethostbyname(arg, &ahp);
if (hp == NULL)
return CLI_SHOWUSAGE;
udptldebugaddr.sin_family = AF_INET;
memcpy(&udptldebugaddr.sin_addr, hp->h_addr, sizeof(udptldebugaddr.sin_addr));
udptldebugaddr.sin_port = htons(port);
if (port == 0)
ast_cli(a->fd, "UDPTL Debugging Enabled for IP: %s\n", ast_inet_ntoa(udptldebugaddr.sin_addr));
else
ast_cli(a->fd, "UDPTL Debugging Enabled for IP: %s:%d\n", ast_inet_ntoa(udptldebugaddr.sin_addr), port);
udptldebug = 1;
}
return CLI_SUCCESS;
}
static struct ast_cli_entry cli_udptl[] = {
AST_CLI_DEFINE(handle_cli_udptl_set_debug, "Enable/Disable UDPTL debugging")
};
static void __ast_udptl_reload(int reload)
{
struct ast_config *cfg;
const char *s;
struct ast_flags config_flags = { reload ? CONFIG_FLAG_FILEUNCHANGED : 0 };
cfg = ast_config_load2("udptl.conf", "udptl", config_flags);
if (cfg == CONFIG_STATUS_FILEMISSING || cfg == CONFIG_STATUS_FILEUNCHANGED || cfg == CONFIG_STATUS_FILEINVALID) {
return;
}
udptlstart = 4500;
udptlend = 4999;
udptlfecentries = 0;
udptlfecspan = 0;
udptlmaxdatagram = 0;
use_even_ports = 0;
if (cfg) {
if ((s = ast_variable_retrieve(cfg, "general", "udptlstart"))) {
udptlstart = atoi(s);
if (udptlstart < 1024) {
ast_log(LOG_WARNING, "Ports under 1024 are not allowed for T.38.\n");
udptlstart = 1024;
}
if (udptlstart > 65535) {
ast_log(LOG_WARNING, "Ports over 65535 are invalid.\n");
udptlstart = 65535;
}
}
if ((s = ast_variable_retrieve(cfg, "general", "udptlend"))) {
udptlend = atoi(s);
if (udptlend < 1024) {
ast_log(LOG_WARNING, "Ports under 1024 are not allowed for T.38.\n");
udptlend = 1024;
}
if (udptlend > 65535) {
ast_log(LOG_WARNING, "Ports over 65535 are invalid.\n");
udptlend = 65535;
}
}
if ((s = ast_variable_retrieve(cfg, "general", "udptlchecksums"))) {
#ifdef SO_NO_CHECK
if (ast_false(s))
nochecksums = 1;
else
nochecksums = 0;
#else
if (ast_false(s))
ast_log(LOG_WARNING, "Disabling UDPTL checksums is not supported on this operating system!\n");
#endif
}
if ((s = ast_variable_retrieve(cfg, "general", "T38FaxUdpEC"))) {
ast_log(LOG_WARNING, "T38FaxUdpEC in udptl.conf is no longer supported; use the t38pt_udptl configuration option in sip.conf instead.\n");
}
if ((s = ast_variable_retrieve(cfg, "general", "T38FaxMaxDatagram"))) {
udptlmaxdatagram = atoi(s);
if (udptlmaxdatagram < 100) {
ast_log(LOG_WARNING, "Too small T38FaxMaxDatagram size. Defaulting to 100.\n");
udptlmaxdatagram = 100;
}
if (udptlmaxdatagram > LOCAL_FAX_MAX_DATAGRAM) {
ast_log(LOG_WARNING, "Too large T38FaxMaxDatagram size. Defaulting to %d.\n", LOCAL_FAX_MAX_DATAGRAM);
udptlmaxdatagram = LOCAL_FAX_MAX_DATAGRAM;
}
}
if ((s = ast_variable_retrieve(cfg, "general", "UDPTLFECentries"))) {
udptlfecentries = atoi(s);
if (udptlfecentries < 1) {
ast_log(LOG_WARNING, "Too small UDPTLFECentries value. Defaulting to 1.\n");
udptlfecentries = 1;
}
if (udptlfecentries > MAX_FEC_ENTRIES) {
ast_log(LOG_WARNING, "Too large UDPTLFECentries value. Defaulting to %d.\n", MAX_FEC_ENTRIES);
udptlfecentries = MAX_FEC_ENTRIES;
}
}
if ((s = ast_variable_retrieve(cfg, "general", "UDPTLFECspan"))) {
udptlfecspan = atoi(s);
if (udptlfecspan < 1) {
ast_log(LOG_WARNING, "Too small UDPTLFECspan value. Defaulting to 1.\n");
udptlfecspan = 1;
}
if (udptlfecspan > MAX_FEC_SPAN) {
ast_log(LOG_WARNING, "Too large UDPTLFECspan value. Defaulting to %d.\n", MAX_FEC_SPAN);
udptlfecspan = MAX_FEC_SPAN;
}
}
if ((s = ast_variable_retrieve(cfg, "general", "use_even_ports"))) {
use_even_ports = ast_true(s);
}
ast_config_destroy(cfg);
}
if (udptlstart >= udptlend) {
ast_log(LOG_WARNING, "Unreasonable values for UDPTL start/end\n");
udptlstart = 4500;
udptlend = 4999;
}
if (use_even_ports && (udptlstart & 1)) {
++udptlstart;
ast_log(LOG_NOTICE, "Odd numbered udptlstart specified but use_even_ports enabled. udptlstart is now %d\n", udptlstart);
}
if (use_even_ports && (udptlend & 1)) {
--udptlend;
ast_log(LOG_NOTICE, "Odd numbered udptlend specified but use_event_ports enabled. udptlend is now %d\n", udptlend);
}
ast_verb(2, "UDPTL allocating from port range %d -> %d\n", udptlstart, udptlend);
}
int ast_udptl_reload(void)
{
__ast_udptl_reload(1);
return 0;
}
void ast_udptl_init(void)
{
ast_cli_register_multiple(cli_udptl, ARRAY_LEN(cli_udptl));
__ast_udptl_reload(0);
}